
Chapter 2

Probability spaces

2.1 From set theory to probability
In this course, we are studying random phenomena: things whose outcome cannot be known with
certainty. Examples of random phenomenon include:

• the outcome of a coin flip;

• the outcome of a die roll;

• the outcome of a presidential election;

• whether or not a basketball player makes a free throw shot;

• whether or not my sou�é falls in the oven;

• the birth weight of a newborn child;

• the number of costumers that will arrive at a store or restaurant on a given day;

• when and where a hurricane will make landfall;

• the time until an unstable particle will decay;

• the bid-ask spread of Google stock at 2:37 pm ET next Wednesday.

These are all things that, for one reason or another (physical reality, lack of information, imperfect
measurement), we do not believe we can perfectly predict. To study random phenomena mathe-
matically, we introduce a definition:

Definition 2.1. A probability space is a triple (S, A ” S, P ):

• (sample space) A nonempty set S containing all of the possible outcomes of the phe-
nomenon;

• (events) Subsets A ” S of the sample space – sets of possible outcomes;

10



CHAPTER 2. PROBABILITY SPACES John Zito

• (probability measure) A function P that takes an event A and assigns to it a a real
number called P (A). This is the probability that the ultimate outcome of the random
phenomenon is an element of the subset A.

Remark 2.1. In mathematics, a space is a set together with some "extra structure." A metric space
is a set together with a function that computes distance between elements. A topological space is
a set together with a notion of what it means for a subset to be “open.” So a probability space is a
set (the sample space) together with a function that tell you how to compute probabilities.

2.1.1 Sample spaces
Here are examples of sample spaces:

Phenomenon Sample space S
Flip two coins in order {HH , HT , TT , TH}
Roll a single die {1, 2, 3, 4, 5, 6}
Card dealt from a shu�ed deck {2✓, 3✓, 4✓, ...}
Winning party in US presidential election {Republican, Democrat, Libertarian,

Green, ... finitely-many other goofy
parties that will never win}

A person’s blood sodium level in mEq/L R+ = (0, ÿ)
How many insurance claims in a week? N
Return on a risky asset R

2.1.2 Events
An event is a set of possible outcomes – a subset of the sample space. We assign probabilities to
events. You may have thought that we would be assigning probabilities to individual outcomes,
and we are doing that too. You can have an event A = {s} containing a single outcome. But we
are going further than that.

When talking informally about a “random event,” we usually describe it in words. But this
qualitative description can always be written as a subset of the sample space.

Description Event A
“the first of two coin flips is a head” {HH , HT }
“the die is even” {2, 4, 6}
“dealt a four” {4✓, 4⇣, 4✏, 4⌘}
“right-wing party wins” {Republican, Libertarian, ...}
“blood sodium in healthy range” [133, 145]
“over a thousand claims” {1001, 1002, 1003, ...}
“your investment loses money” (*ÿ, 0)

2.1.3 Translating set theory to probability
Since events are subsets of a sample space, we will use set theory to work with them. See the slides
from 9/3 for elaboration:

Return to table of contents 11

https://en.wikipedia.org/wiki/Political_parties_in_the_United_States
https://en.wikipedia.org/wiki/Political_parties_in_the_United_States
https://sta240-f25.github.io/slides/2025-09-03-set2prob.html


CHAPTER 2. PROBABILITY SPACES John Zito

Probability Set theory
A or B occur A ‰ B
A and B occur A „ B
A does not occur Ac, with S as the reference set
A happening implies B happened too A ” B
A and B are mutually exclusive A „ B = … (disjoint)

2.2 Probability axioms
We model random phenomena using the idea of probability space, which is a triple (S, A ” S, P )
(Definition 2.1). In order for the probability measure P to be valid, we require that it satisfy the
following axioms:

• (total measure 1) P (S) = 1 (“something in the sample space is guaranteed to happen”);

• (nonnegativity) P (A) g 0 for any event A ” S;

• (countable additivity) If A1, A2, A3, ... is a countably infinite sequence of pairwise disjoint
events (meaning Ai „ Aj = … for any distinct i, j), then

P

H ÿ
Õ

i=1
Ai

I

=
ÿ
…

i=1
P (Ai).

Notational Point 2.1. The infinite union notation we just introduced simply means

ÿ
Õ

i=1
Ai = A1 ‰ A2 ‰ A3 ‰ ...

It is meant in the exact same spirit as if we had an infinite sequence of numbers a1, a2, a3, ..., and
we wrote

ÿ
…

i=1
ai = a1 + a2 + a3 + ...

We will not prove it, but you are free to use the fact that all of our algebraic properties from Sec-
tion 1.6 extend to the infinite case. So for instance,

B „
ÿ
Õ

i=1
Ai =

ÿ
Õ

i=1
(B „ Ai) (distributive property)

H ÿ
Ã

i=1
Ai

Ic

=
ÿ
Õ

i=1
Ac

i . (De Morgan)

Feel free to use these things.

Remark 2.2. The axiom of countable additivity is stated in terms of an infinite sequence of pairwise
disjoint events, but this implies that it holds for any finite collection A1, A2, A3, ..., An as well. If
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you wanted to see that beyond a shadow of a doubt, you do the following. Take your finite collection
A1, A2, A3, ..., An and artificially extend it out so that for all i > n, Ai = …. Then you have

ÿ
Õ

j=1
Aj =

H

n
Õ

j=1
Aj

I

‰
H ÿ

Õ

j=n+1
Aj

I

=
H

n
Õ

j=1
Aj

I

‰
H ÿ

Õ

j=n+1
…
I

=
H

n
Õ

j=1
Aj

I

‰ …

=
n
Õ

j=1
Aj .

So you’ve turned the finite collection into an infinite one, but you haven’t actually changed the
contents of anything. Now, applying the axiom exactly as stated, you get:

P

H

n
Õ

j=1
Aj

I

= P

H ÿ
Õ

j=1
Aj

I

=
ÿ
…

j=1
P (Aj)

=
n
…

j=1
P (Aj) +

ÿ
…

j=n+1
P (Aj)

=
n
…

j=1
P (Aj) +

ÿ
…

j=n+1
P (…)

=
n
…

j=1
P (Aj) +

ÿ
…

j=n+1
0

=
n
…

j=1
P (Aj) + 0

=
n
…

j=1
P (Aj).

Wasn’t that fun?

Remark 2.3. Figure 2.1 displays a cartoon of a countably infinite sequence of pairwise disjoint
sets. So, an infinite parade of blobs in the plane that do not overlap at all. The axiom of countable
additivity says that total probability of all of these sets taken together (their union) is equal to the
sum of the individual probabilities. You should note that this is exactly how area works as well.
If you wanted the total area covered by all of those blobs, you would just add them up. This is
intuition that you can take to the bank. Probability behaves exactly the same way that length, area,
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Figure 2.1

and volume behave on the number line, the plane, and three-dimensional space, respectively. This
is because these are all special cases of the same abstract mathematical structure. So anything you
know about how length/area/volume behave can probably be applied one-for-one with probability,
and you will get the right answer.

Remark 2.4. In some sense, probability theory is “just” a branch of mathematical analysis. In par-
ticular, it is a branch of measure theory, and probability spaces are special cases of measure spaces
(as are Euclidean spaces with their measures of length, area, volume, etc). If you are interested
in really going deep on the mathematics of probability (something you will have to do if you are
considering graduate work in statistics), I suggest you take courses in real analysis.
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2.3 Basic probability rules
We can deduce from the probability axioms several basic “rules” that will be fundamental going
forward. To succeed in the course, you need to become fluent in the use of both the axioms and
these basic rules.

2.3.1 Complement rule
The first such rule is the complement rule which says that for any event A ” S, its probability can
be rewritten as P (A) = 1 * P (Ac). This will come in handy because quite often P (Ac) is easier
to compute than P (A), and so the complement rule gives us permission to do the easier thing and
then apply a simple formula to arrive at the probability we actually care about.

Proof. Let A ” S. As we saw in Section 1.7.3, A ‰ Ac = S, and since an element cannot be both
in A and not in A at the same time, it is a disjoint union: A „ Ac = …. Because A ‰ Ac is equal to
S, their probabilities are also equal, and so we have

P (A ‰ Ac) = P (S) (A ‰ Ac = S)
P (A ‰ Ac) = 1 (total measure one)

P (A) + P (Ac) = 1 (countable additivity)
P (A) = 1 * P (Ac).

Bada bing.

With this result, we can perform a cute sanity check:

Corollary 2.1. P (…) = 0.

Proof. Note that

…c = {x À S : x Ã …} = S
Sc = {x À S : x Ã S} = ….

So

P (…) = P (Sc)
= 1 * P (S) (complement rule)
= 1 * 1 (total measure 1)
= 0.

Riveting.
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Figure 2.2: f is a monotone increasing function, so if the inputs are ordered x1 f x2, then the
outputs have the same ordering: f (x1) f f (x2). So we say f is an order-preserving map. The
order of the original x-values was preserved after the function f was applied to them.

2.3.2 Monotonicity
Theorem 2.2. If A ” B, then P (A) f P (B).

“Monotonicity” means that the probability measure P is an order-preserving function on sets: if
A is a “smaller” set than B in the sense that A ” B, then correspondingly P (A) f P (B). So the
order is preserved after the P function is applied. This is similar to a monotone functions of real
numbers like the one displayed in Figure 2.2.

Proof. To get the job done, we need to express B in terms of A. Recalling Theorem 1.5 and
Figure 1.6, we know that B = A ‰ (B „ Ac) and that this union is disjoint. As such:

P (A ‰ (B „ Ac)) = P (B)
P (A) + P (B „ Ac) = P (B) (countable additivity)

P (A) = P (B) * P (B „ Ac)
≠́≠≠Ø≠≠≠̈

g0
P (A) f P (B). (axiom of nonnegativity)

We showed that P (A) was equal to P (B) minus a quantity that is necessarily nonnegative by our
second axiom. So if P (B„Ac) is exactly zero, P (A) = P (B). If it is positive, P (A) < P (B). Those
are the only options, so either way, we have the result.

Just like the complement rule, this result has momentous consequences:

Corollary 2.3. For any A ” S, 0 f P (A) f 1.

Proof. Let A ” S. Our axioms tell us already that 0 f P (A) and P (S) = 1. Monotonicity gives
us that P (A) f P (S), and so the transitivity of f gives that 0 f P (A) f 1.
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Figure 2.3

We surely already believed that probability was a number between zero and one, but this was not
a property we explicitly imposed with an axiom. Instead, we assumed nonnegativity and total
measure 1, and deduced this property as a consequence.

2.3.3 Law of inclusion/exclusion
Theorem 2.4. If A, B ” S, then P (A ‰ B) = P (A) + P (B) * P (A „ B).

This law is about the probability of a union of two events. We already have an axiom (countable
additivity) addressing this in the special case of two disjoint events, but not all events are disjoint,
and so this rule completes the story by telling us what to do if there is overlap.

Proof. In all of our rules so far, the strategy has been to rewrite the set of interest as a disjoint union,
apply countable additivity, and then do some algebra. So it shall be here. Inspecting Figure 2.3, we
see that the sets A, B, and A ‰ B can all be rewritten as disjoint unions:

A = (A „ B) ‰ (A „ Bc)
B = (A „ B) ‰ (B „ Ac)

A ‰ B = (A „ Bc) ‰ (A „ B) ‰ (B „ Ac).

As such, we can apply countable additivity to each of these:

P (A) = P (A „ B) + P (A „ Bc) (2.1)
P (B) = P (A „ B) + P (B „ Ac) (2.2)

P (A ‰ B) = P (A „ Bc) + P (A „ B) + P (B „ Ac). (2.3)

Rearranging (2.1) and (2.2) gives

P (A „ Bc) = P (A) * P (A „ B)
P (B „ Ac) = P (B) * P (A „ B),
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Figure 2.4

and plugging these expressions into (2.3) gives

P (A ‰ B) = P (A „ Bc) + P (A „ B) + P (B „ Ac)
= P (A) *⇠⇠⇠⇠⇠P (A „ B) +⇠⇠⇠⇠⇠P (A „ B) + P (B) * P (A „ B)
= P (A) + P (B) * P (A „ B).

The main idea of this proof is to avoid double counting the contribution of A „B to the overall
probability. The reason P (A‰B) = P (A)+P (B) does not remain the formula in the case of overlap
is that P (A) and P (B) both “include” P (A „ B), and so the simple sum would incorrectly count it
twice. To correct for this, we subtract it o� once.

2.3.4 Law of total probability
Theorem 2.5. LetB1, B2, B3, ... ” S be a partition ofS, meaning that‰ÿ

i=1Bi = S andBi„Bj = …
for all distinct i, j. Then for any A ” S,

P (A) =
ÿ
…

i=1
P (A „ Bi).

An alternative name for this could be the “divide-and-conquer” law. It says that, in order to com-
pute the “total” probability of A, we have the option to compute the separate probabilities of the
parts of A that overlap with the components of the partition. Once we have these, we just add them
up to get the overall P (A). As with the complement rule, the reason we care about this is because,
sometimes, computing the separate probabilities is easier. Furthermore, recalling Remark 2.3, Fig-
ure 2.4 displays a cartoon demonstrating that the law of total probability is perfectly analogous with
a “law of total area” (or length, or volume, etc): if you partition the plane, the total area of a blob in
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the plane can be alternatively expressed as the sum of the smaller areas in each component of the
partition. All we’re saying is that probability behaves exactly the same way.

Proof. Let B1, B2, ... ” S partition S, and let A ” S. We can rewrite A as a disjoint union:

A = A „ S

= A „
H ÿ
Õ

i=1
Bi

I

= A „
�

B1 ‰ B2 ‰ B3 ‰5
�

= (A „ B1) ‰ (A „ B2) ‰ (A „ B3) ‰5 (distributive property)

=
ÿ
Õ

i=1
(A „ Bi).

Because the Bi are pairwise disjoint, so are the A „ Bi (show this!), and so the result follows from
countable additivity:

P (A) = P

H ÿ
Õ

i=1
(A „ Bi)

I

=
ÿ
…

i=1
P (A „ Bi).

Remark 2.5. Be careful that you don’t mix up operations on sets and operations on real numbers. „,
‰, and c are things you do to sets. +, ù, *, and ÷ are things you do to real numbers like probabilities.
So P (A) ‰ P (B) doesn’t mean anything. And A + B doesn’t necessarily mean anything.
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