
CHAPTER 2. PROBABILITY SPACES John Zito

2.4 Computing probabilities in finite sample spaces
Enough theory! Now, let’s write down some concrete probability spaces and actually calculate
something. To do this, we will make some extra assumptions that reduce our general notion of
a probability space down to a special case where we can use the most basic of tools to compute
probabilities: counting.

Assumption 1 (A1): finite sample space
Assume the sample space is finite:

S = {s1, s2, ..., sn}.

So we can list out all of the possible outcomes one after another, and eventually we’re finished. This
already describes many real-world phenomena of interest, not to mention our standby examples:
coins, dice, playing cards. To completely specify the probability space, it su�ces to assign an
individual probability to each of the individual outcomes:

s1 ⌅ P ({s1})
s2 ⌅ P ({s2})

4
si ⌅ P ({si})
4

sn ⌅ P ({sn}).

Naturally, we require P ({si}) g 0 and
≥n

i=1 P ({si}) = 1 so that the axioms are satisfied. Also,
P ({si}) is pretty clunky notation. As needed, we might substitute P (si), P (i) or pi. Anyhow, that
covers the individual outcomes, but what about P (A) for more general events A?

Because the entire sample space is a finite set, any event A ” S will also be a finite set with
m f n elements, generically denoted:

A = {s<1, s
<
2, ..., s

<
m}.

Because sets are collections of unique objects, the s<i are all distinct. As such, we can rewrite A as
a disjoint union of singleton sets (sets that just have one element in them):

A = {s<1, s
<
2, ..., s

<
m} =

m
Õ

j=1
{s<j}.

Then countable additivity tells us that

P (A) = P (‰m
j=1{s

<
j}) =

m
…

j=1
P ({s<j}).

So the bottom line is this: when you have a finite sample space, the probability of any event A
is just the sum of the individual probabilities of the outcomes in A. In other words, the problem of
computing probabilities collapses to an adding problem.
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Outcomes Probabilities
s1 = 1 P ({s1}) = 3_6 = 1_2
s2 = 2 P ({s2}) = 1_6
s3 = 3 P ({s3}) = 1_6
s4 = 4 P ({s4}) = 1_6

Table 2.1: Probability space for a loaded, four-sided die

Example 2.1. Imagine you have a loaded, four-sided die with probabilities summarized in Ta-
ble 2.1. The event that you roll an odd number is A = {1, 3} = {1} ‰ {3}, and so the probability
of this event is

P (A) = P ({1} ‰ {3}) = P ({1}) + P ({3})

= 3
6 + 1

6
= 4

6
= 2

3 .

Not exactly earth-shattering, but the point I mean to emphasize is the fact that “add up the individ-
ual probabilities" is a consequence of two things in particular: finite sample space and countable
additivity. At this stage in the course where we are building everything up from first principles,
every step, no matter how small, needs to be clearly justified.

Assumption 2 (A2): equally likely outcomes
If, in addition to a finite sample space, we assume “equally-likely outcomes” (ELO), things simplify
further. This assumption just means that every outcome has the same probability. But since these
must add up to one, there is only one value that probability could be:

P ({si}) =
1
n

≈i = 1, 2, ..., n.
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1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

Table 2.2: Sums of two six-sided die rolls.

But if that is the case, then we get the following for any A ” S:

P (A) =
m
…

j=1
P ({s<j})

=
m
…

j=1

1
n

=
m
…

j=1

1
n
� 1

= 1
n

m
…

j=1
1

= 1
n
(1 + 1 + ... + 1

≠́≠≠≠≠≠Ø≠≠≠≠≠≠̈
m times

)

= m
n

= # of outcomes in A
# of outcomes in S

.

So the problem of computing the probability of an event collapses to a counting problem, and the
interpretation of this is that “the more ways that an event can occur, the more likely it is.”

Example 2.2. Imagine you have a fair (unloaded) six-sided die. So S = {1, 2, 3, 4, 5, 6}, which
contains six outcomes, and so each outcome has probability 1/6 of occurring. The event that you
roll an odd number is A = {1, 3, 5}, which has three outcomes in it, so P (A) = 3_6 = 1_2.

Example 2.3. Imagine we are casting two fair, six-sided die and then adding up the numbers on
the two faces. The sample space is given in Table 2.2. Since both die are fair, each cell in the table
is equally-likely, so if we want to compute the probability of A = “sum is even," we just have to
count the total number of outcomes that result in an even sum and divide this by the total number
of outcomes. So

#(A) = 18
#(S) = 36
P (A) = 18_36 = 1_2.
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Summary
If we have...

• (A1: finite sample space) S = {s1, s2, ..., sn};

• (A2: equally-likely outcomes) P ({si}) = 1_n for all i = 1, 2, ..., n,

then for any event A ” S, we have
P (A) = #(A)

#(S) , (2.4)

where #(A)will be our generic notation for the total number of elements in the setA. So, to compute
probabilities in this special case of finite S and ELO, we have to be able to count. How?

2.4.1 The counting principle
When we assume a finite sample space and equally-likely outcomes, the problem of computing
probabilities collapses to a counting problem. We will study various techniques for counting the
number of elements in potentially elaborately specified sets, but the backbone of all of it will be a
very simple principle:

Theorem 2.6. (The counting principle I) If Experiment 1 can result in m possible outcomes,
and Experiment 2 can result in n possible outcomes, then the total number of outcomes for both
experiments jointly is m � n.

This is hardly earth-shattering. To visualize the situation, let {a1, a2, ..., am} be the outcomes
of Experiment 1, let {b1, b2, ..., bn} be the outcome of Experiment 2, and consider arraying things
in a matrix:

b1 b2 5 bn
a1 ? ? 5 ?
a2 ? ? 5 ?
4 4 4 7 5
am ? ? 5 ?

If you wanted to count the total number of distinct (ai, bj) pairs that can be formed from the out-
comes of the two experiments, you see that it is just m � n.

Example 2.4. Recall Example 2.3 and Table 2.2. We had a pair of dice, each with six faces. So the
total number of outcomes is 6ù 6 = 36. Each die is like an experiment in the sense of the counting
principle.

Example 2.5. Consider a standard deck of playing cards without the jokers. There are four suits:
diamonds, spades, hearts, clubs. There are thirteen ranks: Ace, 2, 3, 4, ..., 10, Jack, King, Queen.
Thinking of these as experiments, the counting principle says that the total number of ways you can
mix-and-match the ranks and suits is 4 ù 13 = 52, which we know is the total number of cards in
the deck.

That’s two experiments, but there’s nothing special about two:
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Figure 2.5

Theorem 2.7. (The counting principle II) If p experiments are performed, each with ni outcomes,
then the total number of outcomes across all p experiments is n1 � n2 � ... � np.

Armed with the statement of the counting principle for two experiments, you can prove the
general result using mathematical induction. If you’re feeling froggy, give it a shot!

Example 2.6. How many length-n binary strings are there? You can think of each digit or bit in
the string as an “experiment” with two possible outcomes, 0 or 1:

0 or 1
Ǿ̈
Digit 1

0 or 1
Ǿ̈
Digit 2

5 0 or 1
Ǿ̈
Digit n

Then the counting principle tells us that the total number of ways that those outcomes can be com-
bined to form a length-n string is

2 ù 2 ù ... ù 2
≠́≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠̈

n times

= 2n.

This observation will be generally useful. Consider for instance the random phenomenon of flipping
a coin three times in a row. The sample space S is the set of triples like HHT or THT . How many
outcomes are there? In this case, it isn’t so bad just to list them out and count by hand:

S = {HHH ,HHT ,HTH , THH ,HTT , THT , TTH , TTT }.

So we see that #(S) = 8, which could be a handy bit of information when it comes down to
computing probabilities (assuming the coin is fair). But if we were flipping the coin more than
three times, this would get tedious. A sequence of H_T flips is really just a binary string, so
without enumerating the sample space, we could have calculated that #(S) = 23 = 8.

2.4.2 Selecting k from n
Counting the number of elements in a set will often take the form of a “selecting k from n” counting
problem. Imagine you have an urn with n balls in it. Your task is to withdraw balls from the urn in
order to fill k f n empty slots, as in Figure 2.5.

The question we wish to answer is “how many ways can I fill the k slots?” Before you can
answer that question, there are two issues you have to sort out:
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order matters order does not matter

without replacement n!
(n*k)!

0

n
k

1

= n!
k!(n * k)!

≠́≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠̈
“n choose k”

with replacement nk
�n+k*1

k

�

Table 2.3: How many ways can you select k from n?

Replace + Order + Replace - Order + Replace + Order - Replace - Order -
aa aa
ab ab ab/ba ab/ba
ac ac ac/ca ac/ca
ba ba
bb bb
bc bc bc/cb bc/cb
ca ca
cb cb
cc cc
32 = 9 3! = 6

�4
2

�

= 6
�3
2

�

= 3

Table 2.4: We are filling k = 2 spots by drawing from the set {a, b, c}, which contains n = 3
elements. The table enumerates all of the possible selections, depending on whether or not we
draw with replacement and whether or not order matters. In each case, the total number of possible
selections is di�erent.

1. (with or without replacement?) after I draw a ball from the urn to fill a slot, do I put it back
in the urn so that I can potentially draw it again to fill another slot? Or after I draw a ball, is
it “out of play” forevermore?

2. (order does or does not matter?) Say k = 2. I could draw (Ball 1, Ball 3) or (Ball 3, Ball
1). Do I count these as two separate outcomes because the order is di�erent, or do I consider
them the same outcome because the contents are identical? So, do I ignore or acknowledge
the ordering of the draws when I count?

Depending on how you mix-and-match these two settings, you will get a di�erent answer to
“how many ways can I fill the k slots?” These are summarized in Table 2.3.

Example 2.7. Say that our jar contains n = 3 balls labeled a, b, and c, and we are selecting balls
from the jar to fill k = 2 slots. How many ways can this be done? It depends on order and
replacement. Table 2.4 enumerates all of the possible selections in each of the four cases and counts.
We see that the number of possibilities changes in accordance with the formulas in Table 2.3.

So, in a lil’ baby example, we are able to literally list out all of the possibilities and count by
hand, and the counts we get jive with the formulas in Table 2.3. But where did these formulas come
from?
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With replacement; order matters

This is just the counting principle. Think of each slot as an “experiment.” There are n ways I can
fill the first slot. But it’s with replacement, so when I move onto the second slot, there are still n
ways it can be filled. Same with the third slot, and the fourth, etc. So the total number of ways I
can fill the k slots is

n ù n ù n ù ... ù n = nk.

Without replacement; order matters

This is still the counting principle, but with one wrinkle. When you go to fill the first slot, there are
n things you can put there. Then you move on to the second slot. Because we are drawing without
replacement, there are now only n * 1 things you can put there. Then you move on to the third
slot. There are only n * 2 things you can put there. And so on. Each slot is still an experiment in
the sense of the counting principle, but unlike the previous case, each experiment in this case has a
di�erent number of options. But at the end of the day, you still multiply them:

n ù (n * 1) ù (n * 2) ù ... ù (n * k + 2) ù (n * k + 1)

That formula is the numerically correct answer, but it looks like hell, and we can clean it up. Recall:

n! = n ù (n * 1) ù ... ù (n * k + 2) ù (n * k + 1)
≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

our answer from above

ù (n * k) ù (n * k * 1) ù ... ù 2 ù 1
≠́≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠̈

(n*k)!

.

So a concise way of write the answer in this case is

n!
(n * k)! .

Remark 2.7. Say we are drawing without replacement and acknowledging order with n = k. So
there are just as many objects as slots. This means that by the end of the selection process, all n
objects will eventually be drawn, it’s just a question of the order. Our formula says that the total
number of ways this can be done is n!_(n * n)! = n!_0! = n!_1 = n!, so n! is the total number of
ways that you can re-order or permute n objects. For example, if you have a playlist with 13 songs
on it, then there are 13! = 6, 227, 020, 800 ways you could shu�e it. If Spotify shu�e were truly
random, all 13! of these orderings would be equally likely each time you re-press the shu�e button.
That is definitely not what Spotify does.

Without replacement; order does not matter

Let us momentarily continue thinking about the previous case. If you select k from n without
replacement but acknowledging order, a given selection consists of two features:

1. What were the raw contents?

2. How were the contents ordered?
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If you know both of those things, then you know what selection was made. Think of those two
features as experiments in the sense of the counting principle. The total number of ways you can
select without replacement but acknowledging order is the product of the total number of ways you
can select the raw contents and the total number of ways you can re-order the k things you selected.
But we already have formulas for most of those counts:

#
0

without replacement
order matters

1

= #
0

without replacement
order irrelevant

1

ù #
0

permutations of
the k selected objects

1

n!
(n * k)! = #

0

without replacement
order irrelevant

1

ù k!.

Rearranging, we can solve for the count in the order irrelevant case:

#
0

without replacement
order irrelevant

1

= n!
k!(n * k)! .

As it happens, the number we wrote down is important enough that it gets its own special name and
shorthand notation:

Definition 2.2. The binomial coe�cient is the number
0

n
k

1

= n!
k!(n * k)! . (2.5)

We read
�n
k

�

as “n choose k.” The R command choose(n, k) computes it.

The binomial coe�cients get their name because of their role in the so-called binomial theorem:

Theorem 2.8. If x, y À R and n À N, then

(x + y)n =
n
…

k=0

0

n
k

1

xn*kyk =
n
…

k=0

0

n
k

1

xkyn*k. (2.6)

With replacement; order does not matter

Left as an exercise for the reader. ,
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