
Chapter 3

Random Variables

3.1 The general construction
Informally, a random variable X is just a random number – a number whose value is randomly
determined. In this class we’ll usually denote a random variable with an uppercase Roman letter
toward the end of the alphabet: U , V , X, Y , Z, etc. So how did this number become random in
the first place? It became random because its value was computed based on the outcome of some
underlying random phenomenon.

Consider rolling a pair of fair, four-sided dice. The two faces that you roll are random. The
sample space of this outcome is a set of pairs:

S = {s = (x, y) : x = 1, 2, 3, 4; y = 1, 2, 3, 4}.

Now imagine adding up the two faces you rolled. That is, given an outcome s = (x, y) in S, we
calculate X(s) = x+ y. This is a random variable. It’s a number whose value is random because it
is computed based on the outcome of some random phenomenon. In Table 3.1, I have enumerated
the sample space S of the die roll and included the value of X that you get for each of the di�erent
outcomes.

Because the outcome of the die roll is random, the value of X is random, and so we might
want to answer question about the probability of X achieving certain values. For example, what is
the probability that X ends up being equal to 5? Examining the table, there are four ways that can
happen: rolling (4, 1), (3, 2), (2, 3), or (1, 4). So the event “X is equal to 5" can be rewritten as “You
roll (4, 1), (3, 2), (2, 3), or (1, 4)." This is a disjoint union of equally likely outcomes (remember

1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

Table 3.1: Sums of two four-sided die rolls.
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Figure 3.1

the dice are fair), so we know that

P (X = 5) = P (rolling 4, 1) + P (rolling 3, 2) + P (rolling 2, 3) + P (rolling 1, 4)
= 4(1_16)
= 1_4.

What about the probability that X ends up being even? We see that this is the same as saying “X is
2 or 4 or 6 or 8," and again, we’re in a world with a finite sample space and equally likely outcomes,
so we can get an answer by counting:

P (X even) = P (X À {2, 4, 6, 8}) = 8
16 = 1_2.

So we see that the probabilities governing the behavior of X are directly inherited from the proba-
bilities governing the behavior of the underlying phenomenon – in this case the outcome of the die
roll. Now let’s try to make these ideas a bit more precise.

Definition 3.1. A random variable is a function X : S ô R from a probability space (S, B ”
S, P0) to the real numbers. So the function takes in an outcome s À S and returns the value
of the variable X(s) À R.

Let’s unpack this a little bit:

• (base probability space) The base probability space (S, B ” S, P0) represents the under-
lying random phenomenon that is determining the value of X. In our example, this was the
die roll;

• (random variable) The random variable itself is a completely deterministic function that
takes in outcomes associated with the underlying phenomenon and returns real numbers (Fig-
ure 3.1). So X is random because the outcome it receives is random, not because of anything
special its doing. Recall in the die roll example that X was just the addition function;
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• (pushforward probability space) the action of the function X induces a new probability
space on the real numbers called the pushforward probability space: (R, A ” R, P ). The
new probability measure P is called the probability distribution of X, and it is defined in
terms of the base probability measure P0 in the following way:

P (X À A) = P0
�

X*1(A)
�

= P0 ({s À S : X(s) À A}) . (3.1)

So probabilities in the new space are computed by pulling the set A back to the original space
(via the inverse image of X) and applying the original probability measure P0.

Okay, whatever nerd. The bottom line is this. X is this quantity that is inheriting all of its
randomness from the underlying phenomenon that we represent with the base space. The action
of X then “pushes this probability forward” to the real numbers. Once you’re in the real numbers,
you can ignore most of this mishegoss and just work with the random variable itself and with
probabilities on R. So at the end of the day, in order to fully specify a random variable, you need
to write down two things:

• (range) Range(X) ” R is the set of all possible values that X can take on. Sometimes to
save space I might also call this set fancy, scipt-y X ;

• (distribution) the probability distribution of X is the probability measure on R that answers
the question “what is the probability that X takes values in the set A?" So the distribution is
a function that takes in events A ” R and spits out probabilities P (X À A).

3.1.1 Why do we end up “ignoring” most of this?
“At a certain point in most probability courses, the sample space is rarely mentioned
anymore and we work directly with random variables. But you should keep in mind
that the sample space is really there, lurking in the background.” - Larry Wasserman,
All of Statistics

Well, first o�, we would most definitely not ignore it if we were doing proper, mathematically
rigorous probability theory. But I grant that we’re not quite there, so why do we ultimately get to
eschew this formalism and jump right to “range and distribution”?

Consider the following random quantity:

X = “the price of Google stock at 2:30pm ET on 2/19/2025."

For all intents and purposes, this is random. It cannot be perfectly predicted. How is its value
ultimately determined? Well, for starters, we don’t even really know. But we guess that the value
of X has something to do with supply and demand in a more-or-less competitive market, so you
have millions of buyers across the globe bidding for Google stock, and millions of sellers trying
to o�oad Google stock, and they are making these decisions unilaterally using various kinds of
information and strategies, and the bids and asks somehow equilibrate to determine the stock price.
But while all of that is going on, the market as a whole is bu�eted by random shocks related to
severe weather events, global politics, the personal lives of the Google executives, co-movement
with the value of other stocks, possible technical glitches at the New York Stock Exchange, and on
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and on ad infinitum. So the “underlying random phenomenon" that is ultimately driving the value
of X is nothing less than the sum total disparate churning across all human civilization.

Writing down the probability space (S, B ” S, P0) that captures all of this is nigh impossible,
and even if you could, how exactly do you write down the actual functional form of X? The bottom
line is, you can’t, and you don’t try. But you still want to study X, so you just skip to the end and say
something like “X is a nonnegative continuous random variable with the log-normal distribution."
Good enough. Now go lose money.
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3.2 Discrete random variables
As we said, in order to fully specify a random variable, we must write down its range and its
distribution. So how do you actually write those things down? There are many ways, but in this
course we will focus on two very important special cases. Here’s the first:

Definition 3.2. A random variable X is discrete if its range is a finite or countably infinite set:

Range(X) = {x1, x2, x3, ...} ” R.

In this generic setting we will always adopt the convention that x1 < x2 < x3 < ...

Because the range of a discrete random variable is countable, to fully specify its distribution, it
su�ces to list out the individual probabilities of the individual values in the range:

value probability
x1 P (X = x1)
x2 P (X = x2)
4 4
xi P (X = xi)
4 4

For many of the random variables that we will study, there will be a handy formula for computing
these probabilities, and so we can encode this schedule of individual probabilities in a function:

Definition 3.3. The probability mass function (pmf) of a discrete random variable X is the
function pX : R ô [0, 1] defined by

pX(x) =
T

P (X = x) x À Range(X)
0 else.

(3.2)

Naturally, we require that
≥ÿ

i=1 pX(xi) = 1. If context is clear, we can dispense with the
subscript-X and just denote the pmf with p(x).

So the pmf is the function that takes in values in Range(X) and spits out their individual probabil-
ities. Figure 3.2 displays a cartoon of what the pmf of a discrete random variable might look like
when you plot it. With this picture, we have a better sense of where this word “distribution” comes
from. We have total measure 1 to allocate among the values in the range of X. When you plot the
pmf, you see how the probability mass is “distributed” between them.

Having access to the individual probabilities of the individual values in Range(X) is nice, but
how does that generalize to an overall rule for computing P (X À A) for any set A ” R? As a
consequence of countable additivity, you can show that the general rule is

P (X À A) =
…

xÀA„Range(X)
pX(x). (3.3)

Return to table of contents 47



CHAPTER 3. RANDOM VARIABLES John Zito

Figure 3.2

Figure 3.3
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So the main property of the pmf that you should internalize is that it is a function that you sum over
in order to compute the distribution of X.

The pmf is this handy-dandy object that we can write down as a shorthand for specifying the
entire distribution of a random variable X. But it’s not the only object that would get that job
done. Here is an alternative object that you could write down that would also fully characterize the
distribution of X:

Definition 3.4. The cumulative distribution function (cdf) of a random variable X is the
function FX : R ô [0, 1] defined by FX(x) = P (X À (*ÿ, x]) = P (X f x). Once again,
you can dispense with the subscript-X if the context is clear.

Figure 3.3 is a cartoon of what the cdf might look like for a discrete random variable. It has several
properties that you should note:

• (non-decreasing) it may plateau in places, but it never goes down;

• (right continuous) it has all of its limits if you approach from the right. This is a consequence
of the “f” in the definition of the cdf;

• (“starts" at 0; “ends" at 1) This function has limxô*ÿ F (x) = 0 and limxôÿ F (x) = 1. In
Figure 3.3, 0 and 1 are eventually achieved as values of the cdf, but this is not necessary.

These properties are universal properties shared by any cdf you will ever see for the rest of your
life. For discrete random variables specifically, we observe the additional property that the cdf is
piecewise constant (a step function).

The cdf can be expressed in terms of the pmf by adding:

F (x) = P (X À (*ÿ, x]) =
…

xifx
p(xi).

The pmf can be expressed in terms of the cdf by subtracting:

p(xi) = P (X = xi) = F (xi) * F (xi*1).

We will elaborate on the derivation of this later, but the above identity just makes math of the
observation that the size of the jumps along the cdf are equal to values of the pmf. With these two
expressions, we see that the pmf and cdf are basically two sides of the same coin. They contain
fundamentally the same information, and given one, you can always recover the other. Depending
on the task at hand, you may prefer to work with one or the other, but writing down either amounts
to a complete characterization of the distribution of X.

Once you have written down the range and the distribution of a random variable, you have fully
characterized it. You have completely described the probability behavior of the random quantity
that you sought to model. That said, the full distribution of a random variable is di�cult to “use"
in its entirety. So we are interested in extracting from the distribution some simple summaries
that describe the “typical" or “average" behavior of the random variable. Here is perhaps the most
important one:
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Figure 3.4

Definition 3.5. The expected value of a discrete random variable X is the weighted average
of the values in its range weighted by their probabilities:

E(X) =
…

xÀRange(X)
xP (X = x). (3.4)

We also refer to E(X) as the expectation or the mean.

Informally, the expected value of a random variable is the answer to the question “what is the typical
or average value of this random quantity.” Because it is random, we cannot perfectly predict exactly
what value X will assume in a given instance, but “on average,” what will it be?

In addition to this interpretation, the expected value also has a nice visual interpretation in terms
of the pmf. It is the center of mass or balance point of the pmf, as seen in Figure 3.4. Notice that
in the case of a symmetric pmf, E(X) coincides with the center of the distribution and the peak. In
the asymmetric case, you no longer have that in general. Note also that our formula for the expected
value is an infinite sum in general, and not all infinite sums converge, so E(X) may not always exist
or be finite, and we will see examples of this in Section 3.3.1.
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k P (X = k)
2 1/16
3 2/16
4 3/16
5 4/16
6 3/16
7 2/16
8 1/16

Table 3.2: pmf of the sum of two fair, four-sided die.

Example 3.1. Recall the example from Section 3.1 where X represents the sum of two fair, four-
sided die rolls. From Table 3.1, we see that Range(X) = {2, 3, 4, 5, 6, 7, 8}, so this is a discrete
random variable with a finite range, and we can fully specify the distribution by simply listing out
all of the individual probabilities, as in Table 3.2. Alternatively, we could summarize the contents
of this table with the function

pX(x) =
min(x * 1, 9 * x)

16 , x = 2, 3, ..., 7, 8.

This is obviously not necessary in this case because the range is small and we can list everything
out compactly, but for large or infinite ranges, writing down such a function is really the only way
to specify the distribution. Figure 3.5 displays the pmf and cdf of X, and the expected value is

E(X) =
8
…

k=2
kP (X = k) = 2 1

16 + 3 2
16 +5 + 7 2

16 + 8 1
16 = 5.

From Figure 3.5, we could see that this distribution is symmetric, and so it is not surprising that
E(X) corresponds to the location of the peak.
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Figure 3.5
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