
CHAPTER 3. RANDOM VARIABLES John Zito

3.2.1 Bernoulli distribution

Definition 3.6. X has the Bernoulli distribution if Range(X) = {0, 1} and

P (X = x) = px(1 * p)1*x x = 0, 1,

for some p À [0, 1]. We denote this X Ì Bern(p).

The Bernoulli random variable is the simplest possible example of a random variable, and it serves
as our canonical model of a binary trial: yes/no, true/false, success/failure, heads/tails, win/lose,
1/0. The parameter p is the probability of success:

P (X = 1) = p1(1 * p)1*1 = p1(1 * p)0 = p.

And so 1 * p is the probability of failure by the complement rule. To compute the expected value
of this distribution, we simply apply the definition:

E(X) =
1
…

i=0
iP (X = i) = 0(1 * p) + 1p = p.

In most cases of interest, 0 < p < 1, and so we see that E(X) Ã Range(X) = {0, 1}. So it is a
strange property of the expectation that this “typical value” need not actually be one of the values
that X could take on when the random phenomenon is finally realized. Curious!

Example 3.2. Here is a simple construction that shows how the Bernoulli distribution can arise
from first principles. Recall the formal construction of a random variable:

• (base space) an underlying probability space (S, A ” S, P0);

• (random variable) a function X : S ô R that takes outcomes s and returns real numbers
X(s);

• (pushforward space) a new probability space (R, B ” R, P ) induced by the function X
“pushing forward” the randomness of the base space to the real numbers. The new probability
measure P is called the probability distribution of X.

Consider some fixed event of interest A ” R. We can define the indicator function:

IA(s) =
T

0 s Ã A
1 s À A.

(3.5)

So this is the function that indicates whether or not the event A occurs. IA : S ô R is an indicator
random variable with

• (range) Range(IA) = {0, 1}

• (distribution) P (IA = 1) = P0(A) and P (IA = 0) = P0(Ac) = 1 * P0(A).

So we see that IA Ì Bern(p = P0(A)).
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3.2.2 Binomial distribution

Definition 3.7. X has the binomial distribution if Range(X) = {0, 1, 2, ..., n} and

P (X = k) =
0

n
k

1

pk(1 * p)n*k k = 0, 1, 2, ..., n,

for some p À [0, 1]. We denote this X Ì Binom(n, p).

The binomial distribution arises when we define a random variable X that counts the number of
successes that occur in a sequence of independent binary trials, each with the same probability of
success 0 f p f 1. We can use X Ì Binom(n, p) to model various phenomena:

• the number of heads you observe in n = 100 flips of a fair (p = 1_2) coin;

• an assembly line manufactures n = 200 light bulbs. How many actually work?

• you swipe right on n = 1000 dating profiles. How many swipe right on you?

• you text a survey to n = 50 eligible voters. How many actually respond?

• you attempt n = 40 sou�és. How many come out of the oven light, risen, flu�y, and
delectable?

• so in general, in n independent attempts, each with probability of success p, how many at-
tempts turn out successful?

This is the sort of random variable that we build up from first principles. The underlying sample
space S is the set of all length-n binary strings. Each digit is 0 or 1 indicating whether or not
the trial was a failure or a success. Given a string, X is essentially counting the number of ones:
X(011010) = 3. To see where the pmf of the binomial comes from, consider the case of n = 3. We
start by enumerating the underlying sample space, and then seeing how the underlying probabilities
get pushed forward:

P0 S X = k P (X = k)
(1 * p)3 000 0 (1 * p)3
p(1 * p)2 100 1 3p(1 * p)2
p(1 * p)2 010
p(1 * p)2 001
p2(1 * p) 110 2 3p2(1 * p)
p2(1 * p) 101
p2(1 * p) 011
p3 111 3 p3

First, we see that Range(X) = {0, 1, 2, 3}, because in three trials you could have anywhere from
no successes to all successes. Next, we see that, to compute P (X = 1) for instance, we recognize
that the event “X = 1” only happens if the original sequence is 100, or 010, or 001. This is a
disjoint union, so

P (X = 1) = P0(100 ‰ 010 ‰ 001) = 3p(1 * p)2.
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p(1* p)2 is the probability of observing exactly one success and exactly two failures in a sequence
of three independent trials, and so P (X = 1) is equal to this baseline probability multiplied by the
total number of ways it can happen. In the general n case, the eventX = k only occurs is we observe
exactly k successes and exactly n* k failures in our n trials. The individual probability of any one
such outcome is pk(1 * p)n*k, and so the overall probability of X = k is this number multiplied
by the total number of ways we could construct a length-n binary string with exactly k ones in it.
This is a “select k from n” counting problem, where we have k slots set aside for successful trials,
and we are selecting which of the n trials to designate as the successes. We are drawing without
replacement, and order does not matter, so the total number of ways our length-n string could have
exactly k ones is

�n
k

�

, thus giving the final probability

P (X = k) =
0

n
k

1

pk(1 * p)n*k, k = 0, 1, 2, ..., n.

Next, let us compute the expected value. For now, we will do it by proceeding directly from the
definition, but later we will develop tools that allow us to perform the calculation with much less
pain:

E(X) =
n
…

k=0
kP (X = k)

=
n
…

k=0
k
0

n
k

1

pk(1 * p)n*k

=
n
…

k=1
k
0

n
k

1

pk(1 * p)n*k

=
n
…

k=1
k n!
k!(n * k)!p

k(1 * p)n*k

=
n
…

k=1

n!
(k * 1)!(n * k)!p

k(1 * p)n*k

= np
n
…

k=1

(n * 1)!
(k * 1)!(n * k)!p

k*1(1 * p)n*k

= np
n
…

k=1

0

n * 1
k * 1

1

pk*1(1 * p)n*k

= np
n*1
…

i=0

0

n * 1
i

1

pi(1 * p)n*1*i

= np[p + (1 * p)]n*1

= np.

At the end of the computation, we invoked the binomial theorem: (x + y)m = ≥m
j=0

�m
j

�

xjym*j

with m = n * 1, x = p, and y = 1 * p. Indeed, it is due to their role in this theorem that the
binomial coe�cients get their name, and that the distribution we study gets its name. In any case,
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we see that this was a rather clumsy and inartful computation, and we will have cleaner methods
for doing it later. The final result, though, is intuitive. It implies that the probability of success p
has the interpretation as the proportion of the total number of trials that we expect to be a success:
p = E(X)_n.

Remark 3.1. Figure 3.6 displays the pmf of the binomial distribution for various choices of n À N
and p À (0, 1). We see that, regardless what p is, the pmf resembles a bell-shaped curve more and
more as n increases. This is an example of the central limit theorem, which we will study later.
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p = 0.1 p = 0.4 p = 0.9

n = 5

n = 10

n = 20

n = 50

n = 100

Figure 3.6: As n increases the pmf of Binom(n, p) looks more like a bell curve.
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3.2.3 Geometric distribution

Definition 3.8. X has the geometric distribution if Range(X) = {1, 2, 3, ...} and

P (X = k) = (1 * p)k*1p k = 1, 2, 3, ...,

for some p À (0, 1). We denote this X Ì Geom(p).

The geometric distribution arises when we define a random variable X that counts the number of in-
dependent binary trials we must sit through until we observe the first success. The first success could
occur on the first attempt, or the second, or the third, or the billionth, so Range(X) = {1, 2, 3, ...}.
The event that X = k is equivalent to the event that the first k * 1 trials are failures (each occurs
with probability 1 * p) and the kth trial is a success (occurs with probability p). Since the trials
are independent, the probability of k * 1 failures followed by a success is the product of these
probabilities, like so:

X Trial 1 Trial 2 Trial 3 Trial 4 5 Trial k 5 P (X = k)
1 1 p
2 0 1 (1 * p)1p
3 0 0 1 (1 * p)2p
4 0 0 0 1 (1 * p)3p
4 4
k 0 0 0 0 5 1 (1 * p)k*1p
4 4

To see where this distribution gets its name, let us verify that the pmf sums to one:

ÿ
…

k=1
P (X = k) =

ÿ
…

k=1
(1 * p)k*1p

= p
ÿ
…

k=1
(1 * p)k*1

= p
ÿ
…

i=0
(1 * p)i

= p 1
1 * (1 * p) geometric series, since 1 * p < 1

= p1
p

= 1.
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Next let us calculate the expected value:

E(X) =
ÿ
…

k=1
kP (X = k)

=
ÿ
…

k=1
k(1 * p)k*1p

=
ÿ
…

k=1
(k + 0)(1 * p)k*1p

=
ÿ
…

k=1
(k * 1 + 1)(1 * p)k*1p

=
ÿ
…

k=1
[(k * 1)(1 * p)k*1p + (1 * p)k*1p]

=
ÿ
…

k=1
(k * 1)(1 * p)k*1p +

ÿ
…

k=1
(1 * p)k*1p

=
ÿ
…

i=0
i(1 * p)ip + 1

= 0 +
ÿ
…

i=1
i(1 * p)ip + 1

= (1 * p)
ÿ
…

i=1
i(1 * p)i*1p + 1

= (1 * p)E(X) + 1.

Solving E(X) = (1 * p)E(X) + 1, we have that E(X) = 1_p.

Example 3.3. The first probability problem we encountered was “how many flips of a fair coin
does it take on average until you flip the first head?” A sequence of fair coin flips is a sequence of
independent binary trials with probability of success p = 1_2, and so the number of flips until the
first head has X Ì Geom(1_2). We see then that the expected number of flips until the first head is
E(X) = 1_(1_2) = 2. So on average, the first head occurs on the second flip.
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3.2.4 Poisson distribution

Definition 3.9. X has the Poisson distribution if Range(X) = N = {0, 1, 2, 3, ...} and

P (X = k) = e*� �
k

k! k À N (3.6)

for some rate � > 0. We denote this X Ì Poisson(�).

The Poisson distribution is often used to model the number of random arrivals in a given window
of time: the number of emails you receive in an hour, the number of claims an insurance company
receives in a month, the number of ↵-particles discharged from a radioactive material, etc.

We first check that the pmf is valid:
ÿ
…

k=0
P (X = k) =

ÿ
…

k=0
e*� �

k

k! = e*�
ÿ
…

k=0

�k
k! = e*�e� = 1.

Next we compute the expected value:

E(X) =
ÿ
…

n=0
nP (X = n)

=
ÿ
…

n=0
n�

n

n! e
*�

= e*�
ÿ
…

n=0
n�

n

n! Pull out constant

= e*�
ÿ
…

n=1
n�

n

n! n = 0 term is equal to 0

= e*�
ÿ
…

n=1

�n
(n * 1)! n cancels

= �e*�
ÿ
…

n=1

�n*1
(n * 1)! Pull out �

= �e*�
ÿ
…

j=0

�j
j! Reindex

= �e*�e� Recall Taylor series: ex =
ÿ
…

k=0

xk

k! ≈ x À R

= �.

Remark 3.2. Figure 3.7 displays the pmf of the Poisson for di�erent values of the rate parameter
�. As � increases, we see that the pmf shifts rightward, which makes sense given that E(X) = �.
We also see that it gets wider, which we will make sense of later when we show that var(X) = �
as well. Lastly, we see that the pmf looks more and more bell-like as � grows, similar to what we
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observed with the binomial distribution in Figure 3.6. These of course are not coincidences. Both
are instances of the same general phenomenon: the central limit theorem.
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� = 1

� = 5

� = 10

� = 20

� = 40

Figure 3.7: As � increases, the Poisson pmf shifts right, widens, and becomes more bell-like.
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Figure 3.8: Uniform distributions on di�erent sets of real numbers.XXXShould add CDFs as well

3.2.5 Discrete uniform distribution

Definition 3.10. X has the (discrete) uniform distribution if it has a finite range and all values
are equiprobable. So Range(X) = {x1, x2, ..., xn} ” R for some n À N and

P (X = xi) =
1
n
, ≈i = 1, 2, ..., n.

We denote this X Ì Unif(x1, x2, ..., xn).

Figure 3.8 displays some examples of what the pmf might look like. Because all of the probabil-
ities are the same, it has none of the peaks and valleys and tails we usually expect from a distribution
plot. It’s just uniform across the range. Furthermore, note that this is our first discrete random vari-
able that is supported on a set of arbitrary real numbers. The Bernoulli, binomial, geometric, and
Poisson distributions are all supported on a subset of N, but this is not a requirement for a discrete
random variable. Any finite (or countably infinite) set of real numbers will serve, and here we have
our first.

The expected value of this distribution is

E(X) =
n
…

i=1
xiP (X = xi) =

n
…

i=1
xi
1
n
= 1

n

n
…

i=1
xi.

This is the familiar average. So whenever we compute the average or mean of a set of n numbers,
we are implicitly treating that set of numbers as the range of a discrete random variable with uniform
(1_n) probabilities, and then calculating the expected value.
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