CHAPTER 3. RANDOM VARIABLES John Zito

3.3 Some properties of the expected value

If X is a discrete random variable with Range(X) = {x,, x,, x5, ...}, then its expected value is the
weighted average:

(o]
E(X) = Z x,P(X = x,).
i=1
In this section we itemize some of the important properties of the expected value

3.3.1 The mean may not exist or be finite

To begin, we make the important point that the expected value may not be finite or even exist. To
see why not, consider the case of a discrete random variable X with Range(X) =N = {0, 1, 2, ...}.
In this case, the generic formula for the expected value is
E(X) = Z nP(X = n).
n=0

As n — o0, then n of course blows up. We know that Z:o:o P(X = n) = 1, so we must have that
P(X =n) - 0asn — o0. Sothe P(X = n) part decays to zero at the same time as the »n part
blows up. If the probabilities P(X = n) do not go to zero fast enough, then they won’t reign in the
growth of the n part, and the entire thing will blow up. Observe:

Example 3.4. Let X be a random variable with Range(X) = {1, 2, 3, ...} and
6
P(X=l’l)=ﬁ, l’l=1,2,...
We see that this is a valid pmf:

Z P(X =n) =

8

(well known p-series)
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So the probabilities go to zero as n grows, but not fast enough:

E(X) = Z nP(X = n)

n=1
00
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n=1
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= — it (harmonic series)
w2 n
n=1
= o0.
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So the expected value is infinite. Gross!
Example 3.5. Let X be a random variable with Range(X) = {1, 2, 3, ...} and

P(X =n) =

, n=1,2, ..
nn+1)

You can verify that this is a valid pmf, but then

(e o]

E(X) = Z nP(X = n)
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Example 3.6. Now we consider an example where, instead of the expected value existing and being
infinite, we say that it simply does not exist. Let X be a random variable with

Range(X) = {..., =16, =8, =4, 4,8, 16, ..} = {-2F 1 k=2,3, .JUu (2" : k=2,3, ..}
and pmf
P (X =+2) =L k=23 ..

2k’
Is this a valid pmf? Yes. First, observe that
Y PX=x=YPX=2+YPX=-29=3 Z+3 -
x€Range(X) k=2 k=2 k=2 k=2

If (and only if!) these two terms are finite, then we can add them together. So we have to check the

finiteness first:
!\ 1)
2=205

k=2 <
&0 1 i+2
= Z <—> reindex
=0 2

>

= geometric series
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Great! Now we can add:

Y PX=x)= ZP(X 2")+2P(X——2":2%+2%=% % 1.

x€Range(X) k=2 k=2

Even so, the expected value is undefined:

“EX)y = ) x-P(X=x)= ) -2"P(X =25+ ) 2"P(x =25

x€Range(X) k=2 k=2
- Z S Z L
= Z(—l) + Z 1
k=2 k=2

= —00 + 0.

Having reached an co — oo indeterminate form, we conclude that the expected value simply does
not exist.

3.3.2 The expected value of a transformation

A random variable X is a real number, so you can apply transformations to it: X2, In(X), aX + b,
etc. Because X is random, these transformations will also be random variables with their own
distributions. Later on, we will learn how to compute the entire distribution of a transformation of
arandom variable. But for now, we restrict ourselves to a simpler task: given some function g, how
do you compute E[g(X)]? Here’s an example of doing it the long way:

Example 3.7. Start with a random variable X, where Range(X) = {—1, 0, 1}, P(X = —-1) =2/10,
P(X =0)=5/10, and P(X = 1) = 3/10. Next, define a new random variable Y = g(X) = X?
This new random variable has Range(Y) = {0, 1}, with P(Y =0) = P(X =0) =1/2 and

2 3 1

PY=1H=PXe{-1,1Hh)=PX=-DH+PX=1)= TRET e

So it turns out that Y ~ Bern(1/2), and so E(Y) = E[g(X)] = E(X?) = 0.5.

In order to compute the expected value of X? in this example, we first derived the entire dis-
tribution of X2, and then applied the definition of the expected value to the transformed random
variable. That was simple enough in this toy example, but in other contexts this could be hard, and
if possible we would like to skip this intermediate step of deriving the whole distribution before
computing one measly expected value. Theorem 3.1 provides the shortcut we crave.

Theorem 3.1. If X is a discrete random variable and g : Range(X) — R is a transformation, then

E[gX)]= ), g()xP(X =x). (3.7)

x€Range(X)
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The upshot of Theorem 3.1 is that it allows you to compute E[g(X)] without having to first
derive the range and distribution of the new random variable g(X). The statement of E[g(X)] only
refers to Range(X') and the pmf of X. This is very convenient.

Remark 3.3. Theorem 3.1 is called the law of the unconscious statistician (LOTUS) because
equation 3.7 seems too good to be true. It seems like it’s a mistake — the kind that an unconscious
statistician might carelessly make in a bout of wishful thinking. Sort of like if you weren’t paying
close attention and blithely wrote that (x + y)? equaled x* + y*. But unlike this, and fortunately for
us, LOTUS is as true as the sky is blue.

Example 3.8. Consider the same X from Example 3.7. Theorem 3.1 now tells us that

E[g(X)] = E(X?) = (—1)21—20 + ()21 + 12i

10 10
_2.,3
10 10
1
L

So we get the same answer as before, but without the intermediate step of deriving the entire dis-
tribution of X2. We only had to make use of the range and pmf of the original X.

Theorem 3.2. Let a, b € R be constants, and consider any random variable X for which E(X)
exists and is finite. Then
E(aX +b)=aE(X)+b. (3.8)

In other words, “the expected value of a linear transformation is the linear transformation of the
expected value.”

Fartial proof. Assume X is discrete with Range(X) = {x,, x,, ...}. The theorem does not require
this, but at the moment this is all we can prove with the tools we possess. We are interested in
E[g(X)] for g(x) = ax + b, so LOTUS tells us that

E(aX +b) = Z(axi +b)P(X = x,)
i=1

= Z[axi P(X =x,)+bP(X = x,)]

i=1

=a i x;P(X =x,)+b i P(X =x,)
i=1 i=1

g _ - _
v v
Definition 3.5 1
=aFE(X)+b.

]

Theorem 3.3. If a,, a,, ..., a, € R are constants and X, X,, ..., X, are random variables for
which E(X,) all exist and are finite, then

E (i a,.Xl.) = i a,E(X)). (3.9)

i=1 i=1
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In other words, “the expected value of a linear combination is the linear combination of the expected
values.”

Once we have more tools, we will see a partial proof of this result in the case where n = 2. The
general case then follows by induction.

Remark 3.4. Theorem 3.3 establishes that the expected value is a linear operator. That vocabulary
may be foreboding, but you’ve encountered many linear operators in your life. The derivative is a
linear operator:

%[a F) 4+ b g(x)] = a%f(x) + b%g(x).

The integral is a linear operator:

1 1 1
/ [a- f(x)+b-g(x)]dx = a/ f(x)dx + b/ g(x)dx.
0 0 0

We just mean it distributes over sums and you can pull constants out.

Remark 3.5. Theorem 3.3 is very general. It applies to any collection of random variables, regard-
less their type (discrete, continuous or neither) or their dependence structure. As long as each has
finite mean, the theorem holds.

Remark 3.6. Does it work for infinite sums? Can we take n = oo and say E(Zfi1 a,X;) =
Y, a;E(X)). Not always. And the same goes for the derivative and integral. They do not au-
tomatically pass through infinite sums either.

Example 3.9. If X ~ Binom(n, p), we saw that E(X) = np. But the calculation was ugly. We can
use linearity to clean it up. A binomial random variable can be expressed as a sum of Bernoulli
indicators. Thatis, fori =1, 2, ..., n, let I, ~ Bern(p). Furthermore, assume these are all indepen-

dent. Since the I; all have the same p, we can summarize this situation by writing I, ~ Bern(p),
where 1id stands for independent and identically distributed. Each I, represents a 0/1 trial, they
are all independent, and they have the same probability of success. As such, a new random variable
X that counts the number of successes in these # trials is equivalentto X = )" I, ~ Binom(n, p).
Recalling that the expectation of a Bernoulli is E(I;) = p, we have by the linearity of expectation

that ) ) .
E(XX)=E <2 I,.> =Y E(I)= ) p=np.
i=1 i=1

i=1
Much easier! Granted, we have yet to prove that the expected value is actually a linear operator.
If doing so were a prerequisite for performing this particular calculation, perhaps you would not
regard it as particularly easy. But taking linearity for granted, this is a far more elegant solution
than when we proceeding from the definition.
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