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3.3.3 Variance

The expected value E(X) of a random variable is a convenient single number summary that de-
scribes the “average” or “typical” behavior of a random variable. It captures the location or central
tendency of the distribution. Here is another summary that describes the spread of the distribution:

Definition 3.11. Let X be any random variable with finite mean. Then the variance of X is

var(X) = E [(X — E(X))*] . (3.10)

The standard deviation of X is the square root of the variance: sd(X) = /var(X).

Recalling LOTUS, we see that the variance is simply the expected value of a particular transforma-
tion of X: g(X) = (X — E(X))?. This transformation g is the squared distance between X and its
mean, and so the variance answers the question “how far away is X from its mean, on average?” If
the answer is “not that far,” then the distribution of X is not that spread out. If the answer is “pretty
far,” then the distribution is more spread out. Figure 3.9 displays a cartoon of this. So the variance
is a single number ranging from 0 to oo that summarizes how variable or surprising X is. If X has
low variance near 0, you don’t expect to be surprised by its realizations. It’s basically giving you
results close to the mean. If X has high variance, you expect to regularly be surprised by what it
delivers. E(X) may be the typical value, but values quite far away from E(X) remain fair game.
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Variance of X ~ Bernoulli(p)

var(X) =p - p
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Figure 3.10

Example 3.10. Consider X ~ Bern(p). We know E(X) = p, so by LOTUS, we know that

var(X) = E[(X — E(X))*]
= E[(X - p)’]

1
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Figure 3.10 plots the variance of the Bernoulli as a function of the probability of success p. We
observe a few things: if p = 0, meaning X = 0 is guaranteed, or p = 1, meaning X = 1 is
guaranteed, then the variance is 0, meaning X is perfectly predictable and there are no surprises. If
p = 1/2, then the variance is maximized. Thinking of X as a coin flip then, this implies that a fair

coin is the most surprising, or least predictable, which makes sense. It could go either way with
equal probability.

In the Bernoulli example, we computed the variance using LOTUS. That is the last time we will
do that. The following computation formula is much more convenient.
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Theorem 3.4. Let X be any random variable with finite mean and variance. Then
var(X) = E(X?) — E(X)%. (3.11)

Proof. This calculation is an exercise in applying the linearity of expectation, whilst remembering
that, whatever its value happens to be, E(X) is itself just a constant. So you should treat it like one.
Observe:

var(X) = E[(X — E(X))*]
= E[X*-2E(X)X + E(X)?|
= E(X?) — E[2E(X)X] + E[E(X)*]
= E(X?) = 2E(X)E(X) + E(X)>
= E(X?) = 2E(X)* + E(X)
= E(X?) — E(X)*.
0

Remark 3.7. The quantity E(X?) is called the second moment of X . But there is nothing special
about the number two, and in general E(X") is called the nth moment of X.

Example 3.11. Let X ~ Bern(p) again. We can use LOTUS to compute the second moment:

1
E(X?) = Z K2P(X = k) =0*1—p)+ 12p = p.
k=0

With this, Theorem 3.4 gives that
var(X) = E(X?) — E(X)* = p—p* = p(1 - p).

This is the same result that we got in Example 3.10, but the computation was cleaner.
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Example 3.12. The second moment of X ~ Poisson(A) is
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So var(X) = E(X?) — E(X)*> = A*> + A — A* = A, and strangely, the Poisson distribution has
E(X) = var(X). We saw this in Figure 3.7, where the pmf shifted rightward and widened as A
increased. This property renders the Poisson distribution less useful for modeling count-valued
data than we might hope, because we cannot separately manipulate the center and the spread of the
distribution. An entire literature has emerged in statistics that attempts to modify the Poisson so
that it does not have this funky property.

When studying the expected value, we wondered how we might compute the expectation of a
transformation E[g(X)], and we came up with LOTUS. Is there a convenient, LOTUS-like formula
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for var[g(X)]? In general, no. But an important special case is the linear transformation g(X) =
aX + b. We know that the expected value is a linear operator, and so E(aX + b) = aE(X) + b.
There is a clean formula for var(aX + b), but it’s not linear:

Theorem 3.5. Let X be any random variance with finite mean and variance, and let a, b € R be
arbitrary constants. Then
var(aX + b) = a*var(X). (3.12)

Proof.

var(aX + b) = E[(aX + b)*] — E(aX + b)*
= E(@’X* 4 2abX + b*) — [aE(X) + b]?
= E(@*X* 4+ 2abX + b*) — [a*E(X)? + 2abE(X) + b*]
= a’E(X?) + 2abE(X) + b* — A’ E(X?) — 2abE(X) — b*
= d’E(X?) - E(X)*
= d’[E(X?) — E(X)*]

= a*var(X).
O

Remark 3.8. As we see, it is not the case that var(aX + b) is equal to avar(X) + b, and so the
variance is not a linear operator. But this makes sense. The variance is a measure of spread, and
merely shifting the location of a random variable with X + b, for instance, should not have an effect
on how spread out it is. The spread remains the same.

Theorem 3.6. Let X, X,, ..., X, be independent random variables each with finite mean and
variance (possibly all different), and let a,, a,, ..., a, € R be arbitrary constants. Then

var (Z a,.Xi> = Z a?var(Xi). (3.13)

i= i=1
Example 3.13. If [, i Bern(p), then X = Z:;l 1. ~ Binom(n, p), and we used this fact together

with the linearity of expectation to show that E(X) = np. We can now use Example 3.10 and
Theorem 3.6 to perform a quick derivation of the variance of a binomial random variable:

var(X) = var (Z Ii> = Z var(l;) = Zp(l —p) =np(l — p).
i=1

i=1 i=1
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