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Figure 3.11

3.4 The cumulative distribution function
Thus far we’ve studied discrete random variables: random quantities X where the set of possi-
ble values is finite or countably infinite. In order to specify the distribution of a discrete random
variable, we have two options:

• (pmf) for each value x À Range(X), specify its individual probability P (X = x). If the
range is small enough, these can simply be listed out in a table. Otherwise, this information
must be summarized in a function called the probability mass function:

pX(x) =
T

P (X = x) x À Range(X)
0 else.

• (cdf) define a function FX : R ô [0, 1] that returns FX(x) = P (X f x) for any x À R.

Figure 3.11 visualizes these options, and as we saw in Section 3.2, these are fundamentally two
sides of the same coin: given one, you can always recover the other, either summing up the pmf
to get the cdf, or di�erencing the cdf to get the pmf. Having said that, we have yet to define a
random variable primarily in terms of its cdf. We have worked exclusively with the pmf, and only
occasionally visualized the cdf as a curious byproduct that did not see much action. But what was
once a bit player will now become the star as we turn our attention to other types of random variables
beyond the discrete case.

In order to fully specify any random variable, regardless its type, we must ultimately write down
two objects:

• (range) the set of all possible values Range(X) ” R;

• (distribution) a probability measure A ≠ P (X À A).
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Figure 3.12: Valid cdfs come in all shapes and sizes
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Figure 3.13: Types of continuity for a function f : R ô R

The question then becomes: how? Merely as a technical matter, how do we pull this o�? Unlike
in a first calculus course where we can write down functions f (x) = x2 that take real numbers and
return real numbers, it is not straightforward to write down a simple “formula” that summarizes
how any set A ” R gets assigned its probability P (X À A). And even if it were, how do we ensure
that the resulting map is a valid probability measure that satisfies all of our axioms? It turns out
that the universal answer to the question “how do we write down the distribution of any random
variable” is “write down its cdf.” All random variables, no matter how pathological, possess a cdf,
and the cdf is su�cient for computing the entire distribution, which we will now see.

Recall the four properties of a cumulative distribution function:

• nondecreasing: for any x f y, it must be that FX(x) f FX(y);

• right continuous: FX has all its limits as you approach from the right:

lim
xôa+

FX(x) = FX(a).

This is visualized in Figure 3.13.

• goes to zero: limxô*ÿ FX(x) = 0;

• goes to one: limxôÿ FX(x) = 1.

Every cdf you will ever encounter for the rest of your life satisfies these four properties...at least.
Figure 3.12 displays cartoons of what a valid cdf might look like. How is the cdf su�cient for
computing the entire distribution of a random variable? That is, given any set A ” R, how does
the cdf allow us to compute the number P (X À A)? To show this, we start with intervals of the
form A = (a, b] for a < b:
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Theorem 3.7. Let X by any random variable with cdf FX(x) = P (X f x), and let A = (a, b] for
any real numbers a < b. Then

P (X À A) = P (a < X f b) = FX(b) * FX(a). (3.14)

Proof. Let hilarity ensure:

P (X À A) = P (a < X f b)
= P (a < X and X f b)
= P (a < X) + P (X f b) * P (a < X or X f b) (inclusion/exclusion)
= P (a < X) + P (X f b) * P (X À R)
= 1 * P (X f a) + P (X f b) * P (X À R) (complement rule)
= 1 * P (X f a) + P (X f b) * 1 (axiom: total measure 1)
= P (X f b) * P (X f a)
= FX(b) * FX(a).

So, computing the distribution of X for a generic interval A = (a, b] can always be collapsed
to a cdf calculation. But what about sets of other forms: (a, b), (0, ÿ), {c}, etc? We will not o�er
a formal proof, but any “ordinary-looking” subsets of R like these can ultimately be expressed as
limits, unions, intersections, or complements of intervals like (a, b], and so the overall distribution
P (X À R) for any set A can be computed using Theorem 3.7 together with our basic rules from
Section 2.3.

In this way then, we see that “the cdf is queen.” It is a universal object. All random variables
have one. It fully characterizes the distribution of the random variable. The cdf is su�cient in
principle for computing P (X À A) for any set A. But if it’s so important, why did we hardly ever
mention it in Section 3.2? While the cdf is crucially important theoretically, its practical use can
be limited. In practice, we would like to have alternative characterizations of a distribution that are
easier to work with and more interpretable. The precise nature of that alternative characterization
depends on the type of the random variable. As we saw, when the random variable is of discrete
type for instance, we can characterize the distribution with the pmf, and we got a lot of mileage out
of this option.

So what other types of random variables are there? We know that the cdf is queen, and it
possesses its four universal properties: nondecreasing, right continuous, goes to 0 as x ô *ÿ,
goes to 1 as x ô ÿ. Those apply to all random variables, period end of story I don’t care what.
As such, we can start to classify random variables according to any extra properties their cdf may
possess. For example...
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Figure 3.14: Cartoons of continuous cdfs

3.5 Continuous random variables

Definition 3.12. A random variable X is continuous if its cdf FX(x) = P (X f x) is a contin-
uous function for all x À R.

So stronger than being merely right-continuous, the cdf is now just plain continuous, meaning that
the value of FX at a point a is equal to its limit at that point regardless which direction we approach
from:

lim
xôa

FX(x) = FX(a).

Figure 3.14 displays cartoons of continuous cdfs, which do not have any holes or jumps. One of
the consequences of this is that a continuous random variable will now have a range which is an
uncountably infinite set, like (0, 1), [0, ÿ), or all of R. But because of this, we must learn to accept
a jarringly uninuintive property:

Theorem 3.8. If X is a continuous random variable, then P (X = c) = 0 for any c À R.

Proof.

P (X = b) = lim
aôb

P (a < X f b)

= lim
aôb

[FX(b) * FX(a)]

= lim
aôb

FX(b) * lim
aôb

FX(a)

= FX(b) * FX(b) (cdf is continuous at b)
= 0.

Think about a random variable X with Range(X) = R. There are simply “too many” real
numbers for us to assign non-zero probability to each one and have these “add up” to one. So if we
wish to place a valid probability measure on all of R, we have to accept Theorem 3.8.

One quick, practical consequence of Theorem 3.8 is that it does not matter whether or not you
include the endpoints when you compute the probability that a continuous random variable is in
some interval:

Corollary 3.9. If X is a continuous random variable, then

P (a < X f b) = P (a f X < b) = P (a f X f b) = P (a < X < b).
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Figure 3.15: The Cantor distribution is an example of a singular distribution. This cdf is contin-
uous everywhere, but it is not absolutely continuous, and the derivative is equal to zero (almost)
everywhere, so it does not have a probability density function.

Partial proof. We won’t itemize all the cases, but as an example, consider [a, b]. This can be
rewritten as a disjoint union: [a, b] = {a} ‰ (a, b) ‰ {b}. So by countable additivity P (a f X f
b) = P (X = a) + P (a < X < b) + P (X = b). We know from Theorem 3.8 that P (X = a) =
P (X = b) = 0, so P (a f X f b) = P (a < X < b).

Continuity is a nice property to require because it enforces a certain amount of smoothness, but
it is ultimately a fairly weak condition. It does not rule out functions like the Cantor distribution
displayed in Figure 3.15, which is just plain weird. In practice, when working with continuous RVs,
we require an even stronger form of smoothness...
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