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3.7 More properties of the expected value

A random variable X is a real number whose value is determined by the outcome of some random
phenomenon. To write one down, we have to specify two things: its range and its distribution. To
fully characterize the distribution of a random variable, we often write down objects like the cdf or
the pmf/pdf, from which any probability can be computed. Having access to a complete description
of the probability behavior of a random variable is nice, but we are often interested in extracting
from the distribution of a random variable a few principle features or summaries of the distribution.
We have already seen some:

e The expected value E(X) is a single number that averages over the distribution of X to answer
“for all the random variation in X, where, at the end of the day, will its value typically be
concentrated?”

e The variance var(X) is a single number that answers “how far should I expect X to be from
its expected value?”

When they exist, these are nice ways to concisely report on the key features of the random variation
of X, without having to confront every detail of what the pmf/pdf is up to. And there are more
where that came from.

3.7.1 Standardization
We have seen two properties of expectation and variance:

E(aX +b)=aE(X)+b
var(aX + b) = a*var(X).

Say that a random variable X has E(X) = u, var(X) = ¢2, and sd(X) = . Then we can define a
new random variable Y by applying a transformation to X:

_ XK _X _#

Y

o (o o

As a consequence of the properties above, you can show that E(Y) = 0 and var(Y) = 1:

E(X
E(y)=E<£_ﬁ>= X) _H_H_H_,
o (02 (02 o (o2 (02
var(Y):var(K—E> =%Var(X)=i202= 1.
o (02 o (0}

So, if you start with some random variable X, and then you subtract off its mean (center it) and
divide by its standard deviation (normalize it), you standardize it: transform it to have mean 0 and
variance 1.
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3.7.2 Moments

“Moment” is one of those vocabulary words (like “degrees of freedom,” I would say) that doesn’t
really mean anything, but we just learn how to use it in context. Anyway, here are the definitions
for the different “moments” of a random variable X that has E(X) = y and var(X) = ¢°:

n™ raw moment E(X")
n™ absolute moment E(X|")
n'™ central moment E[(X — )"
n™ absolute, central moment E(|X — u|™
n'™ standardized moment E [(%) ]

n'™ absolute, standardized moment E [ Xou

|
Some of these moments get special names because they teach us something about the “shape” of
the distribution of X

[

e The first raw moment is the mean, and it tells us something about the location of the distri-
bution;

e The second central moment is the variance, and it tells us something about the spread of the
distribution;

e The third standardized moment is called the skewness, and it tells us something about the
asymmetry of the distribution. The Normal distribution has 0 skewness, for example, but the
Gamma has positive skew;

e The fourth standardized moment is called the kurtosis, and it tells us something about the
thickness of the tails of the distribution. Thicker tails mean extreme events are more likely.

This is summarized in Table 3.3.
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Definition 3.19. We say a moment E(X") exists if the corresponding absolute moment is finite:
E(]X|") < . So the mean exists, for example, if E(] X|) < oo.

3.7.3 Quantiles

The mean is a measure of central tendency in a distribution. But it does not always exist. What
other measures can we employ it that case? The main one is the median. This is the point in the
range that has exactly half the probability to the left and half the probability to the right, like in
Figure 3.26.

When the pmf/pdf of a distribution is symmetric, then the median is obviously the center. And
when the expectation exists, the median and the expectation are equal in the symmetric case. But
in general they are not equal, and the median always exists, even if the mean does not. But there is
nothing special about “half the probability.” The median is just an example of a quantile. It’s an
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a = 0.5 quantile to be exact. An ath quantile is any real number g, satisfying
P(X <gq, =a.

So g, is a point in the range with a probability to the left of it. Note that quantiles are not unique
in general. When the cdf Fy is an invertible function (no jumps or plateaus), then the quantiles are
unique, and you can define them this way, displayed in Figure 3.27:

q, = Fy'(a).
For this reason, the inverse cdf Fy, !'is called the quantile function.

Example 3.19. Let X ~ Exp(4), and recall that this means X ~ Gamma(a = 1, f# = 1). So the
pdfis fy(x) = Aexp(—4x) for x > 0, and the cdf is

Fy(x) = / AeMdt =[-e"]} =1—-€e", x>0.
0

For some y € (0, 1), we see that

y=1—e™
eV=1-y
—Ax =1In(1 —y)
_ —In(1-y)
= - ,
and so the quantile function is
_ In(1 —y)
Fxl(y) = _Ta

and the median of the exponential distribution is

In(1 — 0. In(0.
Fs) = -1 =05) _ 105 _n2
A A A
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These distributions have the same raw moments
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3.7.4 The moment-generating function

We have referred many times to the fact that objects like the cdf, the pmf, or the pdf fully and
uniquely characterize the entire distribution of a random variable. If you have any one of these
objects, you have the distribution, and you know everything there is to know about it. Moments are
an example of an object that does not fully and uniquely characterize the distribution of a random
variable. Two random variables can have the exact same moments, and yet be wildly different.

Example 3.20. Consider X ~ N(2, 2)and Y ~ Poisson(2). So these distributions are very different

(discrete versus continuous, different ranges entirely, etc), and yet E(X) = E(Y) = 2 and var(X) =
var(Y) = 2.

That example shows that the first two moments are not enough to uniquely characterize the
distribution, but it turns out that even if all of the infinitely-many moments E(X), E(X?), E(X?),
... are the same, the distributions could still be very different:

Example 3.21. Consider two absolutely continuous random variables X, and X, with pdfs

_ L1 Lo v
fi(x) = \/ﬂxexp< 2(lnx) ), x>0
Fr(x) = f1(0[1 + sin(2z In x)], x> 0.

Figure 3.28 displays these densities, and clearly they are quite different. And yet, you can show
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that E(X}) = E(X)) for all n € N. We start by computing E(X7) via LOTUS:
E(X}) = /0°° x" fo(x)dx

= /°° x" f1(0O[1 + sin(2z In x)] dx
0

= /m[x”f1 (x) + x" f1(x) sin(2z In x)] dx
0

= /00 x" fi(x)dx + /°° x" f1(x)sin(2z In x)] dx
0 0

= E(X]) + /oox"fl(x) sin(2z In x)] dx
0

= E(X") + / X exp (—1(1nx)2)sm(2n1nx)]dx
0 xV2m 2

So it will suffice to show that the second term is zero. We apply the change of variables

u=Inx—n
x = exp(u + n)
1

du = — dx.
X

So

o]

E(X!)= E(X") + /

exp(u + n)" exp <—l(u + n)2> sin(2z(u + n)) du
- \ 27 2

= E(X]) + / 1 exp(nu + n’) exp (—%(u + n)2> sin(2zu + 2zn) du
- \/ 271

= E(X]) + / | exp(nu + n*) exp (—lu2 — nu — lr12> sin(2zu) du
Iy 2 2

= E(X") + = exp ——(u — 1)) sin(2ru) du
odd f?lgction

= E(X")+0

= E(X"),

Alright alright. So moments, even infinitely many of them, are not enough to uniquely charac-
terize a distribution. But there exists an object intimately related to the moments that does uniquely
characterize its distribution:

Definition 3.20. If X is any random variable, and the expected value E[e'¥] exists and is finite
for all 7 in a neighborhood of zero (so for all —b < t < b for some b > 0), then the moment-
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generating function (mgf) of X is

M, (t) = E[e*], t€ (=b,b). (3.25)

Remark 3.17. The moment generating function might not exist! As we have seen, not all expected
values exist or are finite, so not all random variables have a moment generating function.

Theorem 3.14. If X and Y are random variables with mgfs M, and M, and M, = M, then X
and Y have the exact same distribution.

We will not prove this result, but it means that the mgf, like the cdf or pmf or pdf, is one of
those objects that fully and uniquely characterizes the entire distribution of a random variable. If
you know the mgf, you know everything.

That’s all well and good, but what’s the point of this new object? Here’s the point:

Theorem 3.15. If X is a random variable with a moment generating function M ,, then the nth
derivative of the mgf evaluated at zero is equal to the nth raw moment:

MP(0) = E(X") VneN. (3.26)

Proof sketch. We can rewrite M, with a Taylor series expansion about zero (ie a Maclaurin series):

> MP0)
M, (t) = Z ); —"
n=0 :

We can also rewrite e’* using the Taylor series expansion of the exponential function

(tX)” < X",
Z —Zg"

n=0 n=0

While it is not always the case that the expected value of an infinite sum is the infinite sum of the
expected values, it is true in this case (for reasons I will not go into), and so

Ele¥) = 3 22D

|
=0 n:

By definition, we know that M ,(r) = E(e'¥), and so it must be the case that

> M(")(O) _ i ( X"
n=0 n=0 !
The only way these can be equal if is each term is equal, and so M ;1)(0) = E(X"). [l

Remark 3.18. Theorem 3.15 is killer. It allows us to compute moments by taking a derivative
instead of simplifying an integral or an infinite series. As a general matter, differentiation is much
more straightforward than integration, so this will be very useful. Now that we have this tool, we
can use it to do some moment calculations that we’ve been putting off.
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Remark 3.19. The moment-generating function is intimately related to something called the Laplace
transform, which you may encounter in a course on ordinary differential equations.

Example 3.22. Let X ~ Poisson(4), and fix any t € R. Then

My (1) = E[e”]

I
ok
EA

Note that we did not have to place any restrictions on ¢ to complete the computation, so the mgf is
defined for all  and we have

My(@t) =exp(de'— 1), t€R. (3.27)
We can use this to compute the mean and variance of the Poisson:
M (t) = Ae' exp(de’ — A)
_ 2
M(t) = (Ae')* exp(de’ — A) + Ae’ exp(Ae’ — A)
M (0)=E(X) =4
M) = E(X*) = A+
So E(X) = Aand var(X) = E(X?) — E(X)?> = A2+ A — 4> = A. Once you have the mgf, getting

these moment calculations done with derivatives is way easier than proceeding from LOTUS and
grinding through an infinite series or integral.
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Example 3.23. Let X ~ N(0, 1), and fix any * € R. Then

My (1) = E[e"]

=/ e | e 3% dx

- A\ 2r

=/ T L gy
- \/ 271

:/ L bt gy
- \/ 27

© 1 1,2 2_42
— / e—i(x —2tx+t"—t )dx

© \ 21

*© 1 1 2 0
— / e—gl(x—l) -1 dx
- \/ 27

© 1 1 2,12
=/ e—i(x—t) +Et dx
- \/ 271

© 1 1 2 1
=/ —— e 23" dx

o 21

o0
= e%tz/ : e_%(x_t)z dx
- \/ 271

—_——

N(t, 1) PDF

Note two things:

definition

LOTUS

combine base-e terms

factor out -1/2

add/subtract 7>

factor first three terms

distribute -1/2

pull constant out of integral

PDFs integrate to 1

e We did not have to place any restrictions on t to complete the computation, so the mgf is

defined for all #;

e This is a classic example of “massage and squint.” We just pushed and pulled the integrand
and massaged it with constants until it turned into something familiar. Then we applied an

identity.

So the mgf of the standard normal is

M (1) = exp (%ﬂ) . 1eR. (3.28)
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We can use this to compute the mean and variance of the standard normal:
M’ (t) = tex Lp
X - p 2

MY(1) = > exp (%t2> + exp (%ﬂ)

M, (0)=EX)=0
MI(0)=EX)=0+1=1

So E(X) = 0 and var(X) = E(X?) — E(X)*> = 1 — 0 = 1. Not exactly earth-shattering, but note
that it’s the first time we’ve actually seen a calculation of these facts.

Theorem 3.16. If the moment generating function of a random variable X exists, then all of its
moments are finite: E[|X|"] < oo for all n € N.

However, the converse is not true. A random variable could have all finite moments, and yet the
mgf does not exist. So all moments finite is a necessary condition for the existence of the moment
generating function, but not a sufficient one.

Summary of basic facts about moments and mgfs
e mgf exists does imply E(X") finite for all n € N;
o If mgf exists, then M;;)(O) = E(X") foralln € N;

e E(X") finite for all » € N does not imply mgf exists;

My = M, does imply F, = Fy;

E(X") = E(Y") for all n € N does not imply F, = F,.
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