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Figure 4.2: A bivariate density is a surface in three dimensional space, and probabilities are volumes
beneath the curve. The total volume beneath the curve must be one.

4.2 Jointly absolutely continuous random pairs

Definition 4.6. If (X, Y') are jointly absolutely continuous, then their joint distribution can be
summarized with a joint probability density function (joint pdf). This is a bivariate function
fxy : R? > R with the following properties:

o fxy(x,y) 2> 0;
e P((X,Y)ER?) = [T [* fyy(x, y)dxdy = 1.

Given the joint pdf, you can compute the joint distribution by integrating:

P(X.Y)eC)= / / fxr(e, dxdy, CCR

C

In the univariate case, probability corresponds to area under the density curve. In the bivariate
case, probability corresponds to volume under the density surface, as in Figure 4.2.

Definition 4.7. If (X, Y) are jointly absolutely continuous, then each random variable X and
Y has a marginal probability density function (marginal pdf) that describes the distribution
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fx,y) T

Figure 4.3: The conditional density is a renormalized cross-section of the joint density, where we
hold the argument of the conditioning variable constant.

of that random variable on its own:
fx(x) = / Sxy(x, y)dy (4.13)
fy(y) = / Sxy(x, y)dx. (4.14)

To compute f, for example, we say that we integrate y out of the joint density.

To see where the marginal density formulas come from, consider the marginal CDF of one of the
variables:

Fy(x)=P(X <x)= / / SFxy (@, y)dydr.

The marginal PDF is just the derivative, so the fundamental theorem of calculus tells us that

fx(X) = F(x) = %/ / Fxy(t, y)dydt = / Sxy(x, y)dy.

Definition 4.8. The conditional probability density function (conditional pdf) of X or Y
describes its revised behavior conditional on the event Y = y or X = x, respectively. They are
defined to be

Fxy(x, ¥)

= 4.15
Fxyx1y) ) ( )
_ fXY(x, y)
frix(Ix) = W (4.16)
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Figure 4.4: In Example 4.4, the joint range is the unit square on the left, and the joint density is the
surface on the right.

So fxy(x|y), for example, is the cross-section of fy, that holds the second argument fixed
at y but lets x vary. The denominator renormalizes to ensure that the new conditional density
integrates to 1 in x. See Figure 4.3 for a cartoon.

Theorem 4.4. (Marginal-conditional decomposition) From Definition 4.8, we get “two identities
for the price of one:”

Fxy(x, y) = fX|Y(x | »fr(y) = fY|X(y | %) fx(x). 4.17)

Corollary 4.5. (Hierarchical representation) In order to specify a joint distribution for (X, Y),
you can do so hierarchically:

X~ Py
Y| X ~ Pyy.
Theorem 4.4 guarantees that we can stitch these two pieces together to get a valid joint distribution.

Theorem 4.6. (Bayes’ theorem, again) Combining the definition of conditional density with the
marginal-conditional decomposition gives a version of Bayes’ theorem for the conditional PDFs:

Sxy(x, ) _ fY|X(y | x) fx(x)

= = 4.18
P10 =50 fr (+18)
FoyGa y) Ly I0fr )
= = : 4.19
Frix1x) Ix() Fx () (*19)

Example 4.4. Let X and Y have joint density

6x72, , 0,1
ny(x’y):{xy x,y€(O,1)

0 else.
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Figure 4.5: Marginal densities in Example 4.4

The joint range is Range(X, Y) = supp(fxy) = (0, 1) X (0, 1), the unit square in the plane (Fig-
ure 4.4). The marginal densities are

o0 1
fx(x) = / fxy(x, »dy = / 6xy*dy = [2xy3](1) =2x, x€(0,1).
—00 0

00 1
fry) = / [xy(x, p)dx = / 6xy” dx = [3x°y*]; =3)", y€ (0, D).
—o0 0

The conditional densities are

_ fxy(ey) 6xy?

Fxp(x1y) = 0 37 2x, x€(0,1)
_ fXY('x’ y) _ 6xy2 . )
frixlx) = e = o 3y°, y€(O,1).

We see that fyy = fx and fyx = fy, meaning that conditioning does not actually teach us
anything. This motivates a definition.

Definition 4.9. A jointly absolutely continuous pair (X, Y) are independent if

Fxr(x, )= fx(0) fy(y) forall (x, y) € R2, (4.20)
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Joint range: region where 0 <x <y

Figure 4.6: The joint density in Example 4.5.

Alternatively but equivalently, X and Y are independent if

FxyX 1) = fy(x) forall (x, y) € R? (4.21)
frix1x) = fy(y) forall (x, y) € R%. (4.22)

Example 4.5. Consider (X, Y) with joint density
e? 0<x<y<oo
fXY(x’ y) =
0 else.

The joint range and the density surface are displayed in Figure 4.6. Let’s compute all of the
marginals and conditionals:

fx(x) = / Fxy(x, y)dy = / eV dy =[—e7]® = e, 0<x
Fxy(x, ) ey .
fY|X<y|x>=);ZXT=ij=e<y ), X<y

o y y
fro) = / Fxy(x, y)dx = / e dx = e / dx=ye?,  0<y
—00 0 0

_ fXY(xa y) _ e_y _l
Fr(y) ye by
These are all familiar distributions:

Fxpx 1y ) 0<x<y.

X ~ Exponential(1)
Y ~ Gamma(2, 1)
X | Y =y~ Unif(0, y).
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Figure 4.7: Joint density in Example 4.6.

Conditional on X = x, Y is Exponential(1), but shifted right by the amount x.

Example 4.6. Consider a joint distribution for (X, Y) written hierarchically:

X ~ Unif(0, 1)
Y | X = x ~ Unif(0, x).

So
fx(x)=1 0<x<1
fY|X()’|X)=§ 0<y<«x
Fxy(x, y) = fY|X(y | X)fx(x)
=% 0<y<x<l
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The joint density surface is displayed in Figure 4.7. The marginal density of Y is
1
Fr0= [ Fertx
0

y 1
:/ fxy(X, Y)dx+/ fxy(X, y)dx
0
y 1 1 ’
=/ 0dx+/ —dx
0 y X
1
=/ ldx
y X

_ 1
—[lnx]y
=Inl—-Iny

=—11’1y, O<y<l

The conditional density is

. Fxy(x, y) . 1/x
fX|Y(x | y) = A = “Iny’

To compute the conditional expectation of X given Y = y, we apply the definition of expected
value, but we use the conditional density:

0<y<x<l.

1
E(X|Y=y)=/ fo|Y(x|J’)dx
0

1
:/ xfx|y(x|J’)dx
y
1
=/ X l/x dx
y —Iny

1
= L / dx
—Iny J,

_1-vy
T —Iny’

Example 4.7. Consider the joint distribution of random variables X and Y, written in hierarchical
form:

X ~ Gamma(ﬁ,z)
2’ 2

Y| X=x ~ N, 1/x).

This models a normal variable with a “random variance”. To derive the marginal pdf of Y, we fix
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y € R, and get ready for some hardcore “massage and squint”:
fy(y) = / fy|X(y | X)fx(x)dx

0 )
:/ fy|X(y|x)fx(x)dx+/ fy|X(J’|x)fx(x)dx

l;ﬂﬁﬂﬁ?$4/.mﬂnm&mm

/ e_il/_x <2) x2'e™2% dx
Vo)

A -

pdf of N(O, 1/x) pdf of Gamma(v/2,v/2)

22_z2_l o0

V2272272 vyl L2

= —/ x2t2 1e PR )xdx
V)

1
*2

[STRS

G

pdf of Gamma(a = 3 % ﬂ——(v+y2))

'

va2712" ; [2 (v+y )]—(§ %>
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Figure 4.8

Definition 4.10. An absolutely continuous random variable X has Student’s ¢ distribution on
Range(X) = R if its pdf is
v+1 "
g (T > 1,7

<1+—x2> * xeR. (4.23)
wr-l“(%) v

The parameter v > 0 is called the degrees of freedom. We denote this X ~ 7,.

It turns out that the Cauchy distribution is the special case of Student’s t when v = 1:

fe= — D ey L]

VN IEEED)

This follows because I'(1) = 1 and I'(1/2) = \/; We see in Figure 4.8 that members of this family
have a bell-shaped pdf with heavier tails than the normal, but the tails get thinner as v increases.
In fact, as v — oo, t, converges to N(0, 1). Table 4.3 describes the situation with the moments.
We know that for v = 1, the Cauchy distribution has no finite moments. As v increases and the
tails become less heavy, we accumulate more and more finite moments. In the extreme case of
t, = N(O, 1), finally every moment is finite. But for finite 0 < v < oo, we eventually run out. So
the mgf of Student’s ¢ distribution is undefined.
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feature when does it exist? value when it exists

E(X) v>1 0
var(X) v>2 ﬁ

skew(X) V>3 0

Table 4.3: As the degrees of freedom of Student’s ¢ increase, the tails become thinner, and the
higher moments become finite.

Figure 4.9: William Gosset (1876 - 1937) published on the ¢ distribution under the pseudonym
Student while he was an employee of the Guinness brewery in Ireland.
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4.3 Tower property (or, “law of total expectation”)

Here’s another useful shortcut for computing expected values:

Theorem 4.7. If X and Y are jointly distributed random variables, then we can compute the
marginal expected value of X according to:

E(X)= E(E(X | Y)). (4.24)

The inner expectation is a function of Y, and the outer expectation is with respect to the marginal
distribution of Y. So the outer expectation is computed using LOTUS, where g(Y) = E(X | Y) is
the transformation.

Fartial proof. Consider the special case where X and Y are continuous with joint density f,. The
result is true even if the random variables are not all continuous, but the assumption simplifies the
proof. Recall the following:

E(X) = /oofo(x)dx

(o]
[o0]

EX|Y=y= / xfypy(x | y)dx.

—o0

So now, we treat E(X | Y) as a transformation of Y, and we compute its expected value using
LOTUS:

E(E(X |Y)) = / EX |Y =yfy(»dy
= / / xfx|y(x | ¥) dxfy()’) dy

=/ / xfxy(x | ) fy(y)dxdy

= /00 /oofoY(x, y)dxdy MC decomp
= /co /ooxfxy(x, y)dydx Fubini
=[°x/_°°fxy<x, y)dydx

:/oo xfy(x)dx

- EX).

]

Example 4.8. Recall Example 4.3 where N ~ Poisson(1) and X | N = n ~ Binom(n, p). We
saw that marginally, X ~ Poisson(p4), and so we know that E(X) = pA. But if we wanted to jump
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directly to the marginal expected value, the tower property makes it easy:
E(X | N)=Np
E(X) = E(E(X | N))
= E(Np)

= pE(N)
= pA.
Example 4.9. Recall Example 4.6 where X ~ Unif(0, 1) and Y | X = x ~ Unif(0, x). We saw

that the marginal density of Y is f,(y) = —Iny for O < y < 1, so the marginal expected value is

1
EXY)= / —ylnydy.
0
This is a very unpleasant calculation, but the tower property makes it easy:
EY | X)=X/2
E(Y)= E(EY|X))
= E(X/2)

= E(X)/2

=(1/2)/2
= 1/4.

easy peasy lemon squeezy. Furthermore, we already know that E(X) = 1/2, but let’s use the tower
property to perform a sanity check:

E(X)=EEX |Y))

B 1-Y
_E<—lnY>

1

-y
=/ —= d
/0—lnny(y) y

1
1 —
=/ l—y(—lny)dy
o —ny

1
=/ (1= y)dy
0

= [y - 0.5)"];
=1-1/2
=1/2.
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