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Beta sty Lution
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Coin flipping example

I am presented with a mystery coin that may or may not be fair, and I want to estimate the
probability that it comes up heads. I model the flips as iid realizations from a Bernoulli distribution,
and I take a Bayesian approach where I put a prior on the probability of heads, and then access
the posterior distribution after observing some data:

0 ~ Beta(ag, by)

X, |0 % Bern(6)

0]X., ~ Beta(a,, a,).

ay and by are hyperparameters that I adjust so that the shape of the beta distribution matches my
prior beliefs. After I observe some data, by a happy accident, the posterior distribution is also a
member of the beta family, but the hyperparameters have been updated to reflect what I've learned
about 6 after observing some data.

Let’s say that, for whatever reason, I believe it is likely that the coin is biased toward the Tails side
(X; = 0). Maybe the mystery coin was handed to me by someone that has played this trick before,
and the last time we did this dance, the coin was biased toward Tails. Maybe they’re doing it again
to screw with me. So, I pick numbers a, = 1.1 and b, = 4 so that my prior has an appropriate
shape:

o
.
5 |
‘© o _|
c (9\]
(]
o] —
8 o
a < |
o _|
© I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
0

Unfortunately, the guy is screwing with me, but not the way I think. In fact the coin is biased
toward Heads, and the true probability is 6, = 0.8. So my initial beliefs are way off the mark, but
let’s see how they change as I start flipping the coin and learning from data:
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n=16
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n =200
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What did we see?

When n was small, the posterior distribution was straddling the prior and the mle (“splitting the
difference”). As n grew, the prior had less influence on the posterior. The posterior was agreeing
more and more with the sampling distribution of the MLE. And the sampling distribution of the
MLE was concentrating more and more around the true value because we know that it is a consistent
estimator.

So, even though my initial beliefs were “wrong,” with enough data I get wise. Furthermore, we start
to see a strange agreement between Bayesian inference (enshrined in the posterior distribution) and
classical inference (enshrined in the sampling distribution). Is there something to this?
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