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A statistical fallacy of seismic importance

middle-aged woman attends a routine
Abreast cancer screening. She has no
known risk factors but when the result
comes back she’s shocked to learn it’s positive.
So, what are the chances she really does have
breast cancer: 75%, 85% — or higher still?
Confronted with this question, many people
may think of the amazing abilities of medical
technology and guess somewhere around
85%. And they’ll feel vindicated when told
that mammography does indeed detect cancer
in around 85% of those who have it.
Many Significance readers, in contrast, may
just roll their eyes, having recognised this
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familiar “gotcha!” question about probability.
It’s the textbook example of the so-called
base-rate fallacy, a notorious trap awaiting
anyone trying to make sense of diagnostic
tests. Warnings about its ability to lead
people into making faulty judgements date
back at least to the mid-1950s, and it came to
prominence following experimental studies
of its impact by psychologists Amos Tversky
and Daniel Kahneman in the 1970s. Their
findings suggested people fall into the trap
because of a tendency to judge evidence such
as diagnostic test results in isolation, rather
than setting them in proper context. And to

do that requires knowledge of the base rate,
the general prevalence of whatever is being
tested for.

In the case of the cancer test, calculating
the odds that a positive test really does imply
cancer depends on knowing three numbers:
the chances that the test gives false alarms
and misses genuine cases, and the base rate,
which in this case is the prevalence of breast
cancer among those screened.

As the original question fails to give all
three, many readers will conclude that nothing
concrete can be said about the chances of the
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woman having cancer. Well, almost nothing: »
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the Significance editorial board.

The cancer screening question is more than a “gotcha!”. It’s a real-life example of
reasoning with conditional probabilities, where the chances of one event taking place
depend on others. Questions about conditional probabilities usually involve Bayes’
theorem, which captures the relationship between them. This states that the odds of
event A, given an event B has taken place, are

0dds(A | B) = LR x Odds(A),

where LR is the “likelihood ratio” Pr(B | A) | Pr(B|-A), with -A denoting that A does not
take place, and Odds(A) = Pr(A)/[Pr(-A)], Pr(A) being the probability of A.

Bayes’ theorem reveals the base-rate fallacy lurking in the cancer screening example.
We want to know 0dds(C | T+), the odds of the woman having cancer given a positive
test result. Note that this is not the same as 0dds(T+ | C), which are the odds of getting a
positive result, given the presence of cancer (i.e., the “true positive” rate). The theorem
shows that to get what we want we need three quantities: this true positive rate Pr(T+
| €), along with the false positive rate Pr(T+ | =C) and also Pr(C), the chances that any
similar woman chosen at random has cancer before the test was carried out, (i.e. the
base rate). We need this to put the outcome of the test into context using the general
prevalence of breast cancer among the population to which the woman belongs. Failure
to do so constitutes the base-rate fallacy.

Plugging all three numbers into Bayes’ theorem will give the answer - which is easy
enough if one knows the formula. A more insightful approach has been advocated by
psychologist Gerd Gigerenzer of the Max Planck Institute for Human Development,
Berlin. It’s called the natural frequency method.' Imagine the woman is one of 1,000
women screened. Then if Pr(C) - the base rate of cancer among such women - is 0.5%,
there will be just 5 with cancer while the other 995 will be cancer-free. Given a true
positive rate of 85% and a false positive rate of 10%, that means screening will detect
around 0.85 x 5 = 4 of the genuine cases, but also around 100 false positives. So of all the
104 positive results, only 4/104 = 4% will be genuine.

This might suggest that screening is pointless, but Bayes’ theorem helps put the result
in context. The likelihood ratio captures how much stronger the evidence of cancer has
been made by the screening. Plugging in the figures gives a likelihood ratio of 8.5. So, far
from being pointless, the screening has boosted the odds of cancer being present almost
ninefold. The theorem also shows that this likelihood ratio and those of follow-up tests
multiply together, so the strength of evidence quickly mounts.

As Xiao-Li Meng has recently shown,? Bayes’ theorem also leads to several rules of
thumb for when we are trying to diagnose rare diseases - or predict rare events like
major earthquakes (see main text). For example, if the base rate is lower than both the
false positive and false negative rates of the diagnostic or predictive method, a positive
test result or prediction is more likely wrong than right. Whether this condition holds
can often be decided using basic knowledge about the test. It certainly holds for general
breast cancer screening - and also for putative “precursors” of major earthquakes. Bayes’
theorem also shows that, surprisingly, even if a diagnostic or predictive method can catch
every genuine event, its false positive rate must still be below the base rate to ensure
most alerts aren’t false alarms. That is not plausible for precursors of major earthquakes.
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» being familiar with this gotcha question,

they’ll know that whatever the correct answer
may be, it will be much lower than the
seemingly reasonable guesstimate of 85%.
That’s the effect of the base-rate fallacy,
which in this case means failing to take
account of the prevalence of breast cancer
among screened women. Simply put, as this
is low for such women — around 0.5% — even
a test that correctly spots 85% of those with
cancer will still struggle to find many. On the
other hand, as the vast majority are disease-
free, even if the test also correctly rules out
cases with 90% reliability, the 10% of false
alarms will still be a large number. Crunching
the numbers (see box), it turns out that the
chances the woman really does have breast
cancer given her positive result are just 4%. It’s
a stunning result, and one which still provokes
debate about the pros and cons of screening
programmes (tinyurl.com/NCI-falsepos).
Readers who fell into the base-rate fallacy
trap can console themselves by knowing that
senior physicians can make the same mistake
even when given all the figures.* But those
who spotted the trap and concluded that
nothing concrete could be said shouldn’t feel
too smug — as it’s not true. The same theory
that shows that three numbers are needed for
the right answer also shows that just knowing
that the chances of the test fouling up (i.e., the
false alarm rate and the false “all clear” rate)
are likely higher than the base rate implies
that a positive result will most likely be wrong.
And that’s often pretty easy to check. For the
cancer screening test, the false positive and
false negative rates are pretty low, but they’re
still much higher than the breast cancer base
rate of less than 1%. So that means it’s odds-
on that a positive test result will be wrong.
It’s a handy rule of thumb — and it surprised
a lot of statisticians (and the author) when
Harvard University statistician Xiao-Li Meng
tested it on the audience at the famous
American Statistical Association “Woodstock
of Inference” meeting in Bethesda in 2017.
Bayes’ theorem shows that other traps
await those trying to make sense of such
evidence. For example, it warns us of the
danger of blithely accepting figures for the
“accuracy” of, say, a new type of lie detector.
A 95% “success rate” may sound impressive,
but what does it mean? Is it the true positive
rate? If so, what is the corresponding false
positive rate, which is needed to work out the
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likelihood ratio which captures the detector’s
ability to add evidential weight to what we
already know. And what is the base rate?
How does one even go about estimating

the “prevalence” of the dishonesty of an
individual? If it’s very low, Meng’s rule of
thumb may well apply — and a miscarriage of
justice looms.

Perhaps the most profound manifestation of
the base-rate fallacy is its role in the age-old
quest to predict devastating earthquakes. So
far this century these natural disasters have
claimed the lives of over 700,000, with many
millions more left injured or homeless.

Attempts to find reliable tell-tale
“precursors” of earthquakes date back
millennia, the hope being that these would
buy time to lead people to safety. Over the
centuries a host of precursors have been
claimed, ranging from outbreaks of small
tremors and releases of natural radioactive
gas to the strange behaviour of animals. On
3 February 1975 a combination of changes in
groundwater levels, suspected foreshocks and
snakes emerging from hibernation prompted
the evacuation of the city of Haicheng, 500
km east of Beijing. The next day a devastating

7.3 magnitude earthquake struck. Despite
damaging or destroying 90% of the city’s
buildings, all but around 2,000 of the million-
plus population survived.

Yet what was initially hailed as the first-ever
successful earthquake prediction proved to be
the outcome of gut feeling, local actions and
sheer luck.? Neither the timing nor strength
of the earthquake was accurately or precisely
predicted. There had also been multiple false
alarms in the run-up to the earthquake itself.

A terrible reality check for believers in
the dream of earthquake prediction came
the following year when an even stronger
quake struck Tangshan, around 400 km from
Haicheng. This time there were no foreshocks
or “anomalous events” to convince officials to
take action, and at least 240,000 perished.

Despite this, the 1970s saw a surge of
excitement about the possibility of just-in-
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time earthquake prediction. A key driver
was the development of a theory suggesting
that reliable precursors may actually exist.
Known as the dilatancy-diffusion hypothesis,
it promised to replace anecdotal tales of
bizarre “anomalies” with precursors based
on laboratory studies of rocks under extreme
stress. Over the years, attempts were made
to see if such precursors turned up in the
field. The results were mixed. Unsurprisingly,
extrapolating findings made in the lab to the
behaviour of colossal slabs of rock in the Earth’s
crust proved problematic, and the hypothesis is
now regarded as another false dawn.

An influential review published in 1997
by University of Tokyo seismologist Robert
Geller is widely regarded as the obituary for
earthquake prediction: “The idea that there
must be empirically identifiable precursors
before large earthquakes is intuitively

olWapeoe//:sdny Wol) papeojuMo(

Gorodenkoff/shutterstock @G0 1equeides gz uo Jasn Aysieaiun eng Aq 999L9L8/LV/V/gZ/elo!l-lE/ﬁ!SSJ[/lUOO'an

July 2025 | significancemagazine.com


http://significancemagazine.com

BAD STATS

appealing but studies over the last 120 years
have failed to support it”.* Yet for anyone
familiar with the base-rate fallacy, the wonder
is how the dream stayed alive so long. For
suppose that, against all the evidence, a
precursor did exist that infallibly predicts a
major earthquake arriving in the next few
days — that is, its true positive rate is 100%.
Bayes’ theorem warns us that even this is

not good enough unless the precursor’s false
positive rate is lower than the relevant base
rate. Historically we know that the base rate
for a major earthquake striking a city in any
given week is far less than 1%. So the false
positive rate must be even lower still to ensure
most alerts are genuine. And nothing we
know about the behaviour of rock under stress
suggests this is plausible.

In short, the dream of predicting major
earthquakes on timescales appropriate for
evacuations was always going to be just that:
a dream. Given that the base-rate fallacy
has been known about for at least 70 years,
it is bizarre that its relevance to earthquake
prediction seems to have been overlooked
until the mid-1990s.5

Yet while the base-rate fallacy may not have
stopped vast sums being spent on a mirage,

the abject failure it predicted ultimately did -
to life-saving effect. Today millions of people
in seismically active areas benefit from alerts
based on the ultimate earthquake precursor:
the quake itself. When rock ruptures, it sends
out seismic waves travelling at different
speeds. The fastest are to-and-fro primary
(“P”) waves, which travel at around 6 km per
second, followed by up-and-down secondary
(“S”) waves. These travel around half as fast
but are far more destructive. So detecting

the P-waves can give early warning of the
impending arrival of the S-waves.

First used on the famous Shinkansen
“bullet train” network in the 1960s, early
warning systems exploiting this phenomenon
are now operational in parts of the Americas,
Asia, Australasia and Europe. They are not
perfect. At best, they provide only a minute
or two’s warning to take shelter, and anyone
close to the epicentre won’t even get that.

Not all earthquakes produce strong S-waves,
which can lead to false alarms. Even so, these
systems have already saved countless lives.

The vision of precise earthquake prediction
has also given way to broad-brush mitigation
policies, where the ever-present threat in
specific regions is countered through robust

building and retrofitting codes, public
education and drills.

All these measures make sense when seen
through the prism of probability theory, and
it is a tragedy this was not recognised many
decades ago. Statistics is notorious for its
many inferential traps, but few have the power
to shock like the base-rate fallacy, which
continues to stalk the assessment of evidence
in many areas beyond those considered here.
An ability to detect its presence should surely
be part of everyone’s mental toolkit. m
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From the archive

If you enjoyed this issue’s feature on Chinese
astrology (page 14), check out these other
articles related to China from the Significance
archives.
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18 March 2009 Too Many Males in
China: The Causes and the
Consequences

We expect that, roughly, as many boys will

be born into the world as girls. However, in
some places, social pressures combined with
modern medicine seriously distort the ratio of
the sexes. In China, there are a million excess

male births each year. Thérése Hesketh looks

at what this will mean for the generation that
lacks women. tinyurl.com/ywf76amg

29 May 2019 Ask a Statistician:
Does Manchester United Really
Have 100 Million Followers

in China?

Manchester United has claimed to have
“100 million followers” in China, based on a
survey by a market research company. Rob
Mastrodomenico examines the veracity

of this figure and argues that the key

question is, what do we mean by “follower”?

tinyurl.com/4ruhrnxm

= Did you know Significance articles become
free to read one year after publication, and
remain so for ten years? Explore the full
archive at: academic.oup.com/jrssig
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