Recall the gamma function
\[ \Gamma(x)=\int_0^\infty y^{x-1}e^{-y}\,\text{d}y. \]
Show that \(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\).
Recall the gamma function
\[ \Gamma(x)=\int_0^\infty y^{x-1}e^{-y}\,\text{d}y. \]
Show that \(\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\).