Take \(\mathbb{R}\) to be your reference set, and consider these subsets:
\[ \begin{align*} A&=[1,\,5]\\ B&=\{x\in\mathbb{R}\,:\,|x|>2\}\\ C&=(-\infty,\,0]\\ I_n&=\left[0,\,\frac{1}{n}\right] \end{align*} \]
Express each of the following in as simplified and concise a form as possible:
- \(A^c\)
- \(A \cup B\)
- \(A\cap C\)
- \(A\cap C^c\)
- \(B \cap C^c\)
- \(A^c \cap B^c \cap C^c\)
- \((A \cup B) \cap C\)
- \(\bigcap_{n=1}^\infty I_n\)
- \(\bigcup_{n=1}^\infty I_n\)